Global trends in the evolution of metallogenic processes as a reflection of supercontinent cyclicity
详细信息    查看全文
  • 作者:A. V. Tkachev ; D. V. Rundqvist
  • 刊名:Geology of Ore Deposits
  • 出版年:2016
  • 出版时间:July 2016
  • 年:2016
  • 卷:58
  • 期:4
  • 页码:263-283
  • 全文大小:754 KB
  • 刊物主题:Mineral Resources;
  • 出版者:Springer US
  • ISSN:1555-6476
  • 卷排序:58
文摘
The worldwide distribution of large and superlarge mineral deposits (LSLDs) on a geological time scale is analyzed. It has been established that their formation from Eoarchean to Cenozoic was nonuniform in time. The maxima and minima of ore generation intensity correlate well with global cyclical processes, eventually resulting in the assembly and breakup of supercontinents. The periods of supercontinent amalgamation are characterized by the highest rate of continental crust growth due to the contribution of juvenile sources, a maximum of orogenic activity, and the most intense deposit formation. Periods close to betweencycle boundaries are distinguished by a low intensity of both endogenic and ore-forming processes. As follows from the available data, the number of known LSLDs slightly decreases from the Kenoran to Columbian cycle, significantly decreases in the next Rodinian cycle, which, in turn, is followed by abrupt growth in the Pangaean and Amasian cycles, especially as concerns LSLDs of the granitoid-related class. The intensification of metallogenic activity correlates with a commensurable increase in orogenic activity of the Earth’s crust probably caused by continental crust expansion, an increase in the number of sialic blocks participating in the formation of accretionary and collisional orogens, and acceleration of lithospheric plate motion. Some trends are also described for other LSLD classes (basic–alkaline, volcanic-hosted massive sulfide, sedimentary, epigenetic sediment-hosted), caused to a certain extent by supercontinent cycles and their evolutionary variations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700