CD133 and BMI1 expressions and its prognostic role in primary glioblastoma
详细信息    查看全文
  • 作者:M. K. SIBIN ; C. H. LAVANYA ; DHANANJAYA I. BHAT ; NARASINGA RAO…
  • 关键词:primary glioblastoma ; prognosis ; CD133 ; BMI1 ; TP53
  • 刊名:Journal of Genetics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:94
  • 期:4
  • 页码:689-696
  • 全文大小:1,154 KB
  • 参考文献:Abdouh M., Facchino S., Chatoo W., Balasingam V., Ferreira J. and Bernier G. 2009 BMI1 sustains human glioblastoma multiforme stem cell renewal. J. Neurosci. 29, 8884–8896.
    Amente S., Lania L. and Majello B. 2011 Epigenetic reprogramming of Myc target genes. Am. J. Cancer Res. 1, 413–418.
    Beà S., Tort F., Pinyol M., Puig X., Hernández L., Hernández S. et al. 2001 BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res. 61, 2409–2412.
    Brescia P., Ortensi B., Fornasari L., Levi D., Broggi G. and Pelicci G. 2013 CD133 is essential for glioblastoma stem cell maintenance. Stem Cells 31, 857–869.
    Cenci T., Martini M., Montano N., D’Alessandris Q. G., Falchetti M. L., Annibali D. et al. 2012 Prognostic relevance of C-MYC and BMI1 expression in patients with glioblastoma. Am. J. Clin. Pathol. 138, 390–396.
    Chen R., Nishimura M. C., Bumbaca S. M., Kharbanda S., Forrest W. F., Kasman I. M. et al. 2010 A hierarchy of self-renewing tumour-initiating cell types in glioblastoma. Cancer Cell 17, 362–375.
    de Vries N. A., Hulsman D., Akhtar W., De Jong J., Miles D. C., Blom M. et al. 2015 Prolonged EZH2 depletion in glioblastoma causes a robust switch in cell fate resulting in tumour progression. Cell Rep. 10, 383–397.
    Farivar S., Zati Keikha R., Shiari R. and Jadali F. 2013 Expression of BMI-1 in pediatric brain tumours as a new independent prognostic marker of patient survival. Biomed. Res. Int. (doi: 10.​1155/​2013/​192548 ).
    Fromentel C. C. D. and Soussi T. 1992 TP53 tumour suppressor gene: a model for investigating human mutagenesis. Genes Chr. Cancer 4, 1–15.
    Galli R., Binda E., Orfanelli U., Cipelletti B., Gritti A., De Vitis S. et al. 2004 Isolation and characterization of tumourigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021.
    Glinsky G. V., Berezovska O. and Glinskii A. B. 2005 Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest. 115, 1503–1521.
    Grosse-Gehling P., Fargeas C. A., Dittfeld C., Garbe Y., Alison M. R., Corbeil D. et al. 2013 CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol. 229, 355–378.
    Han M., Guo L., Zhang Y., Huang B., Chen A., Chen W. et al. 2015 Clinicopathological and prognostic significance of CD133 in glioma patients: a meta-analysis. Mol. Neurobiol. (doi 10.​1007/​s12035-014-9018-9 ).
    Haupt Y., Alexander W. S., Barri G., Klinken S. P. and Adams J. M. 1991 Novel zinc finger gene implicated as MYC collaborator by retrovirally accelerated lymphomagenesis in E μ-myc transgenic mice. Cell 65, 753–763.
    Häyry V., Tynninen O., Haapasalo H. K., Wölfer J., Paulus W., Hasselblatt M. et al. 2008 Stem cell protein BMI-1 is an independent marker for poor prognosis in oligodendroglial tumours. Neuropath Appl. Neurobiol. 34, 555–563.
    Hemmati H. D., Nakano I., Lazareff J. A., Masterman-Smith M., Geschwind D. H., Bronner-Fraser M. et al. 2003 Cancerous stem cells can arise from pediatric brain tumours. Proc. Natl. Acad. Sci. USA 100, 15178–15183.
    Hyland P. L., McDade S. S., McCloskey R., Dickson G. J., Arthur K., McCance D. J. et al. 2011 Evidence for alteration of EZH2, BMI1, and KDM6A and epigenetic reprogramming in human papillomavirus type 16 E6/E7-expressing keratinocytes. J. Virol. 85, 10999–11006.
    Ishii N., Tada M., Hamou M. F., Janzer R. C., Meagher-Villemure K., Wiestler O. D. et al. 1999 Cells with TP53 mutations in low grade astrocytic tumours evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene 18, 5870–5878.
    Jacobs J. J., Kieboom K., Marino S., DePinho R. A. and Van Lohuizen M. 1999 The oncogene and polycomb-group gene BMI-1 regulates cell proliferation and senescence through the INK4A locus. Nature 397, 164–168.
    Jiang L., Song L., Wu J., Yang Y., Zhu X., Hu B. et al. 2013 BMI-1 promotes glioma angiogenesis by activating NF- κB signaling. PLoS One 8, e55527.
    Kim J. H., Yoon S. Y., Kim C. N., Joo J. H., Moon S. K., Choe I. S. et al. 2004 The BMI-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett. 203, 217–224.
    Kraus J. A., Glesmann N., Beck M., Krex D., Klockgether T., Schackert G. et al. 2000 Molecular analysis of the PTEN, TP53 and CDKN2A tumour suppressor genes in long-term survivors of glioblastoma multiforme. J. Neurooncol. 48, 89–94.
    Lessard J., Baban S. and Sauvageau G. 1998 Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 91, 1216–1224.
    Lessard J., Schumacher A., Thorsteinsdottir U., Van Lohuizen M., Magnuson T. and Sauvageau G. 1999 Functional antagonism of the polycomb-group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev. 13, 2691–2703.
    Liu G., Yuan X., Zeng Z., Tunici P., Ng H., Abdulkadir I. R. et al. 2006 Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol. Cancer 5, 67.
    Liu Y., Ye F., Yamada K., Tso J. L., Zhang Y., Nguyen D. H. et al. 2011 Autocrine endothelin-3/endothelin receptor B signaling maintains cellular and molecular properties of glioblastoma stem cells. Mol. Cancer Res. 9, 1668–1685.
    Louis D. N., Ohgaki H., Wiestler O. D., Cavenee W. K., Burger P. C., Jouvet A. et al. 2007 The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109.
    Metellus P., Nanni-Metellus I., Delfino C., Colin C., Tchogandjian A., Coulibaly B. et al. 2011 Prognostic impact of CD133 mRNA expression in 48 glioblastoma patients treated with concomitant radiochemotherapy: a prospective patient cohort at a single institution. Ann. Surg. Oncol. 18, 2937–2945.
    Miraglia S., Godfrey W., Yin A. H., Atkins K., Warnke R., Holden J. T. et al. 1997 A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021.
    Molofsky A. V., Pardal R., Iwashita T., Park I. K., Clarke M. F. and Morrison S. J. 2003 BMI-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967.
    Newcomb E. W., Cohen H., Lee S. R., Bhalla S. K., Bloom J., Hayes R. L. et al. 1998 Survival of patients with glioblastoma multiforme is not influenced by altered expression of P16, P53, EGFR, MDM2 or BCL-2 genes. Brain Pathol. 8, 655– 667.
    Newcomb E. W., Madonia W. J., Pisharody S., Lang F. F., Koslow M. and Miller D. C. 1993 A correlative study of p53 protein alteration and p53 gene mutation in glioblastoma multiforme. Brain Pathol. 3, 229–235.
    Nicholas M. K. 2007 Glioblastoma multiforme: evidence-based approach to therapy. Expert Rev. Anticancer Ther. 7, S23–S27.
    Ong C. W., Kim L. G., Kong H. H., Low L. Y., Iacopetta B., Soong R. et al. 2010 CD133 expression predicts for non-response to chemotherapy in colorectal cancer. Mod. Pathol. 23, 450– 457.
    Orlando V. 2003 Polycomb, epigenomes, and control of cell identity. Cell 112, 599–606.
    Phatak P., Kalai Selvi S., Divya T., Hegde A. S., Hegde S. and Somasundaram K. 2002 Alterations in tumour suppressor gene p53 in human gliomas from Indian patients. J. Biol. Sci. 27, 673–678.
    Schiebe M., Ohneseit P., Hoffmann W., Meyermann R., Rodemann H. P. and Bamberg M. 2000 Analysis of mdm2 and p53 gene alterations in glioblastomas and its correlation with clinical factors. J. Neurooncol. 49, 197–203.
    Shiraishi S., Tada K., Nakamura H., Makino K., Kochi M., Saya H. et al. 2002 Influence of p53 mutations on prognosis of patients with glioblastoma. Cancer 95, 249–257.
    Singh S. K., Clarke I. D., Terasaki M., Bonn V. E., Hawkins C., Squire J. et al. 2003 Identification of a cancer stem cell in human brain tumours. Cancer Res. 63, 5821–5828.
    Singh S. K., Hawkins C., Clarke I. D., Squire J. A., Bayani J., Hide T. et al. 2004 Identification of human brain tumour initiating cells. Nature 432, 396–401.
    Smith K. S., Chanda S. K., Lingbeek M., Ross D. T., Botstein D., Van Lohuizen M. et al. 2003 BMI-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1. Mol. Cell 12, 393–400.
    Tada M., Matsumoto R., Iggo R. D., Onimaru R., Shirato H., Sawamura Y. et al. 1998 Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res. 58, 1793–1797.
    Tso C. L., Shintaku P., Chen J., Liu Q., Liu J., Chen Z. et al. 2006 Primary glioblastomas express mesenchymal stem-like properties. Mol. Cancer Res. 4, 607–619.
    Van Lohuizen M., Verbeek S., Scheljen B., Wientjens E., Van der Guidon H. and Berns A. 1991 Identification of cooperating oncogenes in E μ-myc transgenic mice by provirus tagging. Cell 65, 737–752.
    Vogelstein B., Lane D. and Levine A. J. 2000 Surfing the p53 network. Nature 408, 307–310.
    Vogelstein B., Sur S. and Prives C. 2010 TP53: the most frequently altered gene in human cancers. Nature Edu. 3, 6.
    Vonlanthen S., Heighway J., Altermatt H. J., Gugger M., Kappeler A., Borner M. M. et al. 2001 The BMI-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br. J. Cancer. 84, 1372– 1376.
    Vougiouklakis T., Mitselou A. and Agnantis N. J. 2006 Sudden death due to primary intracranial neoplasms: a forensic autopsy study. Anticancer Res. 26, 2463–2466.
    Vousden K. H. and Lane D. P. 2007 p53 in health and disease. Mol. Cell. Biol. 8, 275–283.
    Wu Z., Wang Q., Wang L., Li G., Liu H., Fan F. et al. 2013 Combined aberrant expression of BMI1 and EZH2 is predictive of poor prognosis in glioma patients. J. Neurol. Sci. 335, 191–196.
    Yuan X., Curtin J., Xiong Y., Liu G., Waschsmann-Hogiu S., Farkas D. L. et al. 2004 Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392– 9400.
  • 作者单位:M. K. SIBIN (1)
    C. H. LAVANYA (1)
    DHANANJAYA I. BHAT (2)
    NARASINGA RAO (2)
    N. GEETHASHREE (1)
    W. VIBHUTI (1)
    G. K. CHETAN (1)

    1. Department of Human Genetics, Bengaluru, 560 029, India
    2. Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, 560 029, India
  • 刊物主题:Life Sciences, general; Microbial Genetics and Genomics; Plant Genetics & Genomics; Animal Genetics and Genomics; Evolutionary Biology;
  • 出版者:Springer India
  • ISSN:0973-7731
文摘
Glioblastoma is the most common malignant brain tumour, generated by bulk of malignant cancer stem cells, which express various stem cell factors like CD133, BMI1 and nestin. There are several studies which show the importance of CD133 in cancer, but the function and interaction with other major oncogenes and tumour suppressor genes is still not understood. This study aimed to analyse the expression of CD133 mRNA and its correlations with BMI1 protein expression and TP53 mutations in newly diagnosed glioblastoma patients and its role in prognosis. Overexpression of CD133 mRNA and BMI1 protein was found in 47.6 and 76.2% patients respectively and TP53 mutations was seen in 57.1% of patients in our study. There was no correlation among TP53 mutations and expressions of CD133 and BMI1. We found that high level of BMI1 expression was favourable for the patient survival (P= 0.0075) and high CD133 mRNA expression was unfavourable for the patient survival (P= 0.0226). CD133 mRNA and BMI1 protein expression could independently predict the glioblastoma patient survival in multivariate analysis. In conclusion, the overexpression of these stem cell markers is a common event in glioblastoma progression and could be used as potential prognostic markers. Keywords primary glioblastoma prognosis CD133 BMI1 TP53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700