Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate
详细信息    查看全文
  • 作者:Gregory Guirimand ; Kengo Sasaki ; Kentaro Inokuma…
  • 关键词:Xylitol ; Hemicellulose ; Consolidated bioprocessing (CBP) ; Fermentation ; Cell surface display ; Membrane filtration ; Yeast
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:100
  • 期:8
  • 页码:3477-3487
  • 全文大小:459 KB
  • 参考文献:Albuquerque TL, De da Silva IJ, de Macedo GR, MVP R (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789CrossRef
    Amore R, Kötter P, Küster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109(1):89–97CrossRef PubMed
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef PubMed
    Bae J, Kuroda K, Ueda M (2015) Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl Environ Microbiol 81:59–66CrossRef PubMed PubMedCentral
    Chen DC, Yang BC, Kuo TT (1992) One-step transformation of yeast in stationary phase. Curr Genet 21(1):83–84CrossRef PubMed
    Chen X, Jiang Z-H, Chen S, Qin W (2010) Microbial and bioconversion production of d -xylitol and its detection and application. Int J Biol Sci 6:834–844CrossRef PubMed PubMedCentral
    Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89:631–640CrossRef
    Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218CrossRef PubMed
    Hasunuma T, Hori Y, Sakamoto T, Ochiai M, Hatanaka H, Kondo A (2014) Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses. Microb Cell Factories 13:145. doi:10.​1186/​s12934-014-0145-9 CrossRef
    Hasunuma T, Ishii J, Kondo A (2015) Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Curr Opin Chem Biol 29:1–9. doi:10.​1016/​j.​cbpa.​2015.​06.​004 CrossRef PubMed
    He Y, Bagley DM, Leung KT, Liss SN, Liao BQ (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30:817–858CrossRef PubMed
    Inokuma K, Hasunuma T, Kondo A (2014) Efficient yeast cell-surface display of exo- and endo-cellulase using the SED1 anchoring region and its original promoter. Biotechnol. For Biofuels. 7:8CrossRef
    Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70(9):5407–5414CrossRef PubMed PubMedCentral
    Kato H, Matsuda F, Yamada R, Nagata K, Shirai T, Hasunuma T, Kondo A (2013) Cocktail δ-integration of xylose assimilation genes for efficient ethanol production from xylose in Saccharomyces cerevisiae. J Biosci Bioeng 116(3):333–336. doi:10.​1016/​j.​jbiosc.​2013.​03.​020 CrossRef PubMed
    Kim SR, Ha SJ, Kong II, Jin YS (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14(4):336–343. doi:10.​1016/​j.​ymben.​2012.​04.​001 CrossRef PubMed
    Lynd LR, van Zyl WH, Mc Bride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583CrossRef PubMed
    Maiti SK, Thuyavan YL, Singh S, Oberoi HS, Agarwal GP (2012) Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresour Technol 114:419–427CrossRef PubMed
    Matano Y, Hasunuma T, Kondo A (2013) Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulase-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol 135:403–409CrossRef PubMed
    Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273CrossRef
    Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem 55(2):231–236. doi:10.​1021/​jf062330u CrossRef PubMed
    Qi B, Luo J, Chen G, Chen X, Wan Y (2012) Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolysate of steam exploded wheat straw. Bioresour Technol 104:466–472CrossRef PubMed
    Rafiqul IS, Sakinah AM, Zularisam AW (2015) Enzymatic production of bioxylitol from sawdust hydrolysate: screening of process parameters. Appl Biochem Biotechnol 176(4):1071–1083. doi:10.​1007/​s12010-015-1630-2 CrossRef PubMed
    Roberto IC, Silva S, Felipe MG, De Mancilha IM, Sato S (1996) Bioconversion of rice straw hemicellulose hydrolysate for the production of xylitol. Appl Biochem Biotechnol 57:339–347CrossRef
    Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa Jr A, Felipe MG (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53(1):53–59CrossRef PubMed
    Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158(4):203–210CrossRef PubMed
    Sasaki K, Tsuge Y, Sasaki D, Hasunuma T, Sakamoto T, Sakihama Y, Ogino C, Kondo A (2014) Optimized membrane process to increase hemicellulosic ethanol production from pretreated rice straw by recombinant xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 169C:380–386CrossRef
    Sasaki K, Tsuge Y, Sasaki D, Teramura H, Inokuma K, Hasunuma T, Ogino C, Kondo A (2015a) Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 185:263–268CrossRef PubMed
    Sasaki K, Okamoto M, Shirai T, Tsuge Y, Teramura H, Sasaki D, Kawaguchi H, Hasunuma T, Ogino C, Matsuda F, Kikuchi J, Kondo A (2015b) Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnol. Biofuels. 8:88CrossRef PubMed PubMedCentral
    Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMed PubMedCentral
    Su B, Wu M, Lin J, Yang L (2013) Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnol Lett 35(11):1781–1789. doi:10.​1007/​s10529-s013-1279-2 CrossRef PubMed
    Tanaka T, Kondo A (2015) Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnol Adv. doi:10.​1016/​j.​biotechadv.​2015.​06.​002 PubMed
    Weng YH, Wei HJ, Tsai TY, Lin TH, Wei TY, Guo GL, Huang CP (2010) Separation of furans and carboxylic acids from sugars in dilute acid rice straw hydrolyzates by nanofiltration. Bioresour Technol 101:4889–4894CrossRef PubMed
    Werpy T, Petersen G, (2004). Top value added chemicals from biomass. Volume 1-Results of screening for potential candidates from sugars and synthesis gas, DTIC Document. 9.12.3
    Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160:87–112CrossRef
    Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb. Cell- Fact 9:32CrossRef PubMed PubMedCentral
    Yamada R, Hasunuma T, Kondo A (2013) Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated Bioprocessing. Biotechnol Adv 31(6):754–763. doi:10.​1016/​j.​biotechadv.​2013.​02.​007 CrossRef PubMed
    Zhang J, Geng A, Yao C, Lu Y, Li Q (2012) Xylitol production from d -xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol 105:134–141CrossRef PubMed
  • 作者单位:Gregory Guirimand (1)
    Kengo Sasaki (1)
    Kentaro Inokuma (1)
    Takahiro Bamba (2)
    Tomohisa Hasunuma (1)
    Akihiko Kondo (2) (3)

    1. Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
    2. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
    3. Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Xylitol, a value-added polyol deriving from d-xylose, is widely used in both the food and pharmaceutical industries. Despite extensive studies aiming to streamline the production of xylitol, the manufacturing cost of this product remains high while demand is constantly growing worldwide. Biotechnological production of xylitol from lignocellulosic waste may constitute an advantageous and sustainable option to address this issue. However, to date, there have been few reports of biomass conversion to xylitol. In the present study, xylitol was directly produced from rice straw hydrolysate using a recombinant Saccharomyces cerevisiae YPH499 strain expressing cytosolic xylose reductase (XR), along with β-glucosidase (BGL), xylosidase (XYL), and xylanase (XYN) enzymes (co-)displayed on the cell surface; xylitol production by this strain did not require addition of any commercial enzymes. All of these enzymes contributed to the consolidated bioprocessing (CBP) of the lignocellulosic hydrolysate to xylitol to produce 5.8 g/L xylitol with 79.5 % of theoretical yield from xylose contained in the biomass. Furthermore, nanofiltration of the rice straw hydrolysate provided removal of fermentation inhibitors while simultaneously increasing sugar concentrations, facilitating high concentration xylitol production (37.9 g/L) in the CBP. This study is the first report (to our knowledge) of the combination of cell surface engineering approach and membrane separation technology for xylitol production, which could be extended to further industrial applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700