The role of nuclear medicine in differentiated thyroid cancer
详细信息    查看全文
  • 作者:Susanne Kohlfürst MD (1)
  • 关键词:Diagnosis of differentiated thyroid cancer ; Therapy of differentiated thyroid cancer ; Follow up of differentiated thyroid cancer ; Schilddrüsenkarzinom ; Diagnostik ; Schilddrüsenkarzinom ; Therapie ; Schilddrüsenkarzinom ; Nachsorge
  • 刊名:Wiener Medizinische Wochenschrift
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:162
  • 期:19-20
  • 页码:407-415
  • 全文大小:594KB
  • 参考文献:1. Gomez-Segovia I, Gallowitsch HJ, Kresnik E, et al. Descriptive epidemiology of thyroid carcinoma in Carinthia, Austria: 1984-001. Histopathologic features and tumor classification of 734 cases under elevated general iodination of table salt since 1990: population based age stratified analysis on thyroid carcinoma incidence. Thyroid. 2004;14(4):277-6. CrossRef
    2. Lind P, Kumnig G, Heinisch M, et al. Iodine supplementation in Austria: methods and results. Thyroid. 2002;12:903-. CrossRef
    3. Colonna M, Guizard AV, Schvartz C, et al. A time trend analysis of papillary and follicular cancers as a function of tumour size: a study of data from six cancer registries in France (1983-000). Eur J Cancer. 2007;43(5):891-00. CrossRef
    4. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16 Suppl 1:1-3. CrossRef
    5. Hambly NM, Gonen M, Gerst SR, et al. Implementation of evidence-based guidelines for thyroid nodule biopsy: a model for establishment of practice standards. AJR AM J Roentgenol. 2011;196(3):655-0. CrossRef
    6. Chan BK, Desser TS, Mc Dougall IR, et al. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med. 2003;22:1083-0.
    7. Mikosch P, Gallowitsch HJ, Kresnik E, et al. Pr?operative Dignit?tsabkl?rung von Schilddrüsenknoten im Strumaendemiegebiet: M?glichkeiten und Limitationen. Wien Med Wochenschr. 2000;150:278-87.
    8. Wong KT, Ahuja AT. Ultrasound of thyroid cancer. Cancer Imaging. 2005;5:157-6. CrossRef
    9. De Nicola H, Szejnfeld J, Logullo AF, et al. Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasm. J Ultrasoun Med. 2005;24(7):897-04.
    10. Bianek-Bodzak A, Zaleski K, Studniarek M, et al. Color Doppler sonography in malignancy of thyroid nodules. J Ultrasoun Med. 2003;22:758.
    11. Rago T, Santini F, Scutari M. Elastography: new developments in ultrasound for predecting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92:2917-2. CrossRef
    12. Rago T, Scutari M, Scartini F, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or non diagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274-0. CrossRef
    13. Rorive S, D’Hene N, Fossion C, et al. Ultrasound-guided fine-needle aspiration of thyroid nodules: stratification of malignancy risk using follicular proliferation grading, clinical and ultrasonographic features. Eur J Endocrinol. 2010;162:1107-5. CrossRef
    14. Mikosch P, Gallowitsch HJ, Kresnik E, et al. Value of ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in an endemic goitre area. Eur J Nuc Med. 2000;27(1):62-. CrossRef
    15. Carmeci C, Jeffrey RB, Mc Dougall IR, et al. Ultrasound-guided fine-needle aspiration biopsy of thyroid masses. Thyroid. 1998,8(4):283-89. CrossRef
    16. Kresnik E, Gallowitsch HJ, Mikosch P, et al. Scintigraphic and ultrasonographic appearance in different tumor stages of thyroid carcinoma. Acta Med Austraca. 2000;27(1):32-. CrossRef
    17. Kusic Z, Becker DV, Saenger EL, et al. Comparison of technetium-99m and iodine-123 imaging of thyroid nodules: correlation with pathologic findings. J Nucl Med. 1990;31(4):393-.
    18. Beierwalters WH. Comparison of technetium-99m and iodine-123 nodules: correlation with pathologic findings. J Nucl Med. 1990;31(4):400-.
    19. Kresnik E, Gallowitsch HJ, Mikosch P, et al. Evaluation of thyroid nodules with Tc-99m tetrofosmin dual phase scintigraphy. Eur J Nucl Med. 1997;24:716-1.
    20. Lind P. Multi-tracer imaging of thyroid: is there a role in the preoperative assessment of nodular goiter? Eur J Nucl Med. 1999;26:795-. CrossRef
    21. Kim BS, Kim SJ, Kim IJ, et al. Factors associated with positive F-18 Fluorodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. Thyroid. 2012 Mar 5 Epub ahead of print.
    22. Deandreis D, Al Ghuzlan A, Auperin A, et al. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165-2. CrossRef
    23. Joensuu H, Ahonen A, Klemi PJ. 18F-fluorodeoxyglucose imaging in the preoperative diagnosis of thyroid malignancy. Eur J Nucl Med. 1988;13:502-06. CrossRef
    24. Verburg FA, Stockel MP, Düren C, et al. No survival difference after successful I131 ablation between patients with initially low risk and high risk differentiated thyroid cancer. Nucl Med Mol Imaging. 2010;37(2):276-83. CrossRef
    25. Pacini F, Ladenson PW, Schlumberger M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926-2. CrossRef
    26. Luster M, Sherman SI, Skarulis MC, et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2003;30:1371-. CrossRef
    27. Coopers DS, Doberty GM, Haugen BR, et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2006;16:109-2. CrossRef
    28. Luster M, Clarke SE, Dietlein M; et al. Guidelines on radioiodine treatment of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941-9. CrossRef
    29. Pacini F, Castagna MG, Brilli L, et al. Differentiated thyroid cancer: ESMO Clinical recommendations for diagnosis, treatment and follow up. Ann Oncol 2010;21 Suppl 5:214-.
    30. Hackshaw A, Hasmer C, Mallick U, et al. 131 I activity for remnant ablation in patients with differentiated thyroid cancer: A systematic review. J Clin Endocrinol Metab. 2007;92:28-8. CrossRef
    31. Pilli T, Brianzoni E, Capocetti F, et al. A comparison of 1850 (50?mCi) and 3700 MBq (100?mCi) 131-iodine administration doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. JCEM. 2007;92(9):3542.
    32. Hermann M, Tonninger K, Kober F. Minimal invasive follicular thyroid carcinoma. Not always total thyroidectomy. Chirurg. 2010;81:627-35. CrossRef
    33. Thompson LD, Wieneke JA, Paal E, et al. A clinopathologic study of minimally invasive follicular carcinoma of the thyroid gland with a review of the English literature. Cancer. 2001;91(3):505-24. CrossRef
    34. Pacini F, Schlumberger M, Dralle H, et al. European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787-03. CrossRef
    35. Fatourechi V, Hay ID, Mullan BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573-. CrossRef
    36. Kohlfuerst S, Igerc I, Lobnig M, et al. Posttherapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886-93. CrossRef
    37. Schmidt D, Szikszai A, Linke R, et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18-3. CrossRef
    38. Grewal RK, Tuttle RM, Fox J, et al. The effect of posttherapy 131 SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51(9):1361-. CrossRef
    39. Van Herle AJ, Uller RP. Elevated thyroglobulin: a marker of metastases in differentiated thyroid carcinoma. J Clin Invest. 1975;56:272-. CrossRef
    40. Cherk MH, Francis P, Topliss DJ, et al. Incidence and implications of negative serum thyroglobulin but positive I-31 whole body scans in patients with well differentiated thyroid cancer prepared with rhTSH or thyroid hormone withdrawal. Clin Endocrinol (Oxf) 2012;76(5):734-0
    41. Lind P, Kohlfürst S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin Nucl Med. 2006;36(3):194-05. CrossRef
    42. Pacini F. Follow up of differentiated thyroid cancer. Eur J Nucl Med. 2002;29 Suppl 2:492-96. CrossRef
    43. Haber RS. Role of ultrasonography in the diagnosis and management of thyroid cancer. Endocr Pract. 2000;6:396-00.
    44. Rosario PW, de Faria S, Bicalho L, et al. Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma. J Ultrasound Med. 2005;24(10):1385-.
    45. Pacini F, Molinaro E, Castagna MG, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3668-673. CrossRef
    46. Torlontano M, Attard M, Crocetti U, et al. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metab. 2004;89:3402-407. CrossRef
    47. Lubin E, Mechlis-Frish S, Zatz S et al. Serum thyroglobulin and iodine-131 whole body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma. J Nucl Med. 1994;35(2):257-62.
    48. De Meer SG, Vriens MR, Zelissen PM, et al. The role of routine-diagnostic radioiodine whole-body scintigraphy in patients with high-risk differentiated thyroid cancer.J Nucl Med. 2011;52(1):56-. CrossRef
    49. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80(5):1488-2. CrossRef
    50. Lind P. Should high hTg levels in the absence of iodine uptake be treated. Eur J Nucl Med. 2003;30:157-60. CrossRef
    51. Barwick T, Murray I, Megadmi H et al. Single photon emission computed tomography (SPECT)/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162(6):1131-. CrossRef
    52. Spanu A, Solinas ME, Chessa F, et al. 131 I SPECT/CT in the follow up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50(2):184-0. CrossRef
    53. Zoller M, Kohlfuerst S, Igerc I, et al. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging. 2007;34(4):487-5. CrossRef
    54. Bannas P, Derlin T, Groth M, et al. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26(1):77-. CrossRef
    55. Shammas A, Degirmenci B, Mountz JM, et al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J Nucl Med. 2007;48(2):221-.
    56. Giovanella L, Ceriani L, De Palma D, et al. Relationship between serum thyroglobulin and (18) FDG PET/CT in (131) I‐negative differentiated thyroid carcinomas. Head Neck 2012;34(5):626-1. CrossRef
    57. Leboulleux S, Schroeder PR, Busaidy NL. Assessment of the incremental value of recombinant TSH stimulation before FDG PET/CT imaging to localize residual differentiated thyroid cancer. J Clin Endocrinol Metab. 2009;94:1310-316. CrossRef
    58. Petrich T, B?rner AR, Otho D. Influence of rhTSH on ((18)F) fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2002;29(5):641-. CrossRef
    59. Jentzen W, Freudenberg L, Bockisch A, et al. Quantitative imaging of (124)I with PET/CT in pretherapy lesion dosimetry. Effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging. 2011;55(1):21-3.
    60. Freudenberg LS, Jentzen W, Stahl A, et al. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 1:S48-6. CrossRef
    61. Middendorp M, Selkinski I, Happel C, et al. Comparison of positron emission tomography with 18F FDG and 68 Ga DOTATOC in recurrent differentiated thyroid cancer. Preliminary data. Q J Nucl med Mol Imaging. 2010;54(1):76-3.
    62. Gabriel M, Andergassen U, Putzer D, et al. Individualized peptide-related-radionuclide-therapy concept using different radiolabelled somatostatin analogs in advanced cancer patients. Q J Nucl Med Mol Imaging. 2010;54(1):92-.
  • 作者单位:Susanne Kohlfürst MD (1)

    1. Department of Nuclear Medicine and Endocrinology, PET-CT Center Klagenfurt, Feschnigstra?e 11, 9020, Klagenfurt, Austria
  • ISSN:1563-258X
文摘
In differentiated thyroid cancer (DTC) nuclear medicine is able to cover the spectrum from diagnosis and treatment to follow up keeping patient’s management in one institution. Nowadays, DTC is often diagnosed per chance, presenting as small indolent nodule diagnosed on routinely performed ultrasound. Ultrasound and ultrasonography-guided fine-needle aspiration biopsy together with scintigraphy are probably the most adequate tools for diagnosis. After thyroidectomy, treatment with iodine-131 is routinely performed in a nuclear medicine therapy institution as a standard procedure in most of the cases with regard to histology. In case of iodine positive metastases, repeated therapies can be performed in order to reduce tumour burden. In the follow up of DTC thyroglobulin (tumour marker), ultrasound and diagnostic whole body scan are established procedures. With the development of SPECT/CT and PET/CT (18F-FDG, 68Ga-somatostatin receptor) combining functional and anatomic imaging the nuclear medicine spectrum has further increased.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700