Smart Cu1.75S nanocapsules with high and stable photothermal efficiency for NIR photo-triggered drug release
详细信息    查看全文
  • 作者:Sheng Huang ; Jing Liu ; Qian He ; Hongli Chen ; Jiabin Cui ; Suying Xu
  • 关键词:copper sulfides ; near infrared light ; photothermal therapy ; drug release
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:12
  • 页码:4038-4047
  • 全文大小:1,873 KB
  • 参考文献:[1]Peng, Z. Y.; Qin, J. B.; Li, B.; Ye, K. C.; Zhang, Y. X.; Yang, X. R.; Yuan, F. K.; Huang, L. J.; Hu, J. Q.; Lu, X. W. An effective approach to reduce inflammation and stenosis in carotid artery: Polypyrrole nanoparticle-based photothermal therapy. Nanoscale 2015, 7, 7682-691.CrossRef
    [2]Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137, 362-68.CrossRef
    [3]Huang, S.; Peng, S.; Li, Y. B.; Cui, J. B.; Chen, H. L.; Wang, L. Y. Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery. Nano Res. 2015, 8, 1932-943.CrossRef
    [4]He, Q.; Huang, S.; Xu, S. Y.; Wang, L. Y. pH-responsive cocktail drug nanocarriers by encapsulating paclitaxel with doxorubicin modified poly(amino acid). RSC Adv. 2015, 5, 43148-3154.CrossRef
    [5]Bai, X. L.; Wang, S. G.; Xu, S. Y.; Wang, L. Y. Luminescent nanocarriers for simultaneous drug or gene delivery and imaging tracking. TrAC-Trends Anal. Chem. 2015, 73, 54-3.CrossRef
    [6]Bai, M.; Bai, X. L.; Wang, L. Y. Real-time fluorescence tracking of gene delivery via multifunctional nanocomposites. Anal. Chem. 2014, 86, 11196-1202.CrossRef
    [7]Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dualcompartment janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086-5092.CrossRef
    [8]Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041-3048.CrossRef
    [9]Kong, S. D.; Zhang, W. Z.; Lee, J. H.; Brammer, K.; Lal, R.; Karin, M.; Jin, S. H. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release. Nano Lett. 2010, 10, 5088-092.CrossRef
    [10]Nakayama, M.; Okano, T.; Miyazaki, T.; Kohori, F.; Sakai, K.; Yokoyama, M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 2006, 115, 46-6.CrossRef
    [11]Zhang, Z. J.; Wang, J.; Nie, X.; Wen, T.; Ji, Y. L.; Wu, X. C.; Zhao, Y. L.; Chen, C. Y. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 2014, 136, 7317-326.CrossRef
    [12]Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-39.CrossRef
    [13]Kumar, A.; Kumar, S.; Rhim, W. K.; Kim, G. H.; Nam, J. M. Oxidative nanopeeling chemistry-based synthesis and photodynamic and photothermal therapeutic applications of plasmonic core-petal nanostructures. J. Am. Chem. Soc. 2014, 136, 16317-6325.CrossRef
    [14]Xu, Y. Y.; Wang, J.; Li, X. F.; Liu, Y.; Dai, L. R.; Wu, X. C.; Chen, C. Y. Selective inhibition of breast cancer stem cells by gold nanorods mediated plasmonic hyperthermia. Biomaterials 2014, 35, 4667-677.CrossRef
    [15]Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Accounts Chem. Res. 2008, 41, 1587-595.CrossRef
    [16]Ma, Y.; Liang, X. L.; Tong, S.; Bao, G.; Ren, Q. S.; Dai, Z. F. Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy. Adv. Funct. Mater. 2013, 23, 815-22.CrossRef
    [17]Ye, E. Y.; Win, K. Y.; Tan, H. R.; Lin, M.; Teng, C. P.; Mlayah, A.; Han, M. Y. Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect. J. Am. Chem. Soc. 2011, 133, 8506-509.CrossRef
    [18]Wang, C.; Xu, L. G.; Liang, C.; Xiang, J.; Peng, R.; Liu, Z. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv. Mater. 2014, 26, 8154-162.CrossRef
    [19]Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825-831.CrossRef
    [20]Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-893.CrossRef
    [21]Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. C
  • 作者单位:Sheng Huang (1)
    Jing Liu (2)
    Qian He (1)
    Hongli Chen (1)
    Jiabin Cui (1)
    Suying Xu (1)
    Yuliang Zhao (2)
    Chunying Chen (2)
    Leyu Wang (1)

    1. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
    2. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100190, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Thermosensitive drug delivery systems (DDSs) face major challenges, such as remote and repeatable control of in vivo temperature, although these can increase the therapeutic efficacy of drugs. To address this issue, we coated near-infrared (NIR) photothermal Cu1.75S nanocrystals with pH/thermos-sensitive polymer by in situ polymerization. The doxorubicine (DOX) loading content was up to 40 wt.%, with less than 8.2 wt.% of DOX being leaked under normal physiological conditions (pH = 7.4, 37 °C) for almost 48 h in the absence of NIR light. These nanocapsules demonstrate excellent photothermal stability by continuous longterm NIR irradiation. Based on the stable and high photothermal efficiency (55.8%), pre-loaded drugs were released as desired using 808-nm light as a trigger. Both in vitro and in vivo antitumor therapy results demonstrated that this smart nanoplatform is an effective agent for synergistic hyperthermia-based chemotherapy of cancer, demonstrating remote and noninvasive control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700