H 2 + in a lattice of cavities: Ammonia-like splitting of the lowest level
详细信息    查看全文
  • 作者:K. A. Sveshnikov ; A. V. Tolokonnikov
  • 关键词:confinement of atomic systems ; boundary condition of third kind ; Robin boundary condition ; Wigner ; Seitz cell ; two ; level system ; double ; well potential
  • 刊名:Moscow University Physics Bulletin
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:70
  • 期:3
  • 页码:181-189
  • 全文大小:649 KB
  • 参考文献:1.P. M. Morse and E. C. G. Stueckelberg, Phys. Rev. 33, 932 (1929).ADS View Article
    2.J. ?í?ek, R. J. Damburg, S. Graffi, V. Grecchi, E. M. Harrell, J. G. Harris, S. Nakai, J. Paldus, R. K. Propin and H. J. Silverstone, Phys. Rev. A: At., Mol., Opt. Phys. 33, 12 (1986).ADS View Article
    3.G. Hadinger, M. Aubert–Frecon, and G. Hadinger, J. Phys. B: At., Mol., Opt. Phys. 22, 697 (1989).ADS View Article
    4.J. Kobus, Comput. Phys. Commun. 184, 799 (2013).MathSciNet ADS View Article
    5.L. Pauling, Chem. Rev. 5, 173 (1928).View Article
    6.M. Battezaati and V. Magnasco, J. Phys. A: Math. Gen. 37, 10639 (2004).ADS View Article
    7.M. Cohen and C. A. Coulson, Math. Proc. Cambridge Philos. Soc. 57, 96 (1961).MathSciNet ADS View Article
    8.J. M. Taylor, Z.–C. Yan, A. Dalgarno, and J. F. Babb, Mol. Phys. 97, 25 (1999).ADS View Article
    9.T. Hoffmann–Ostenhof and J. D. Morgan III, J. Chem. Phys. 75, 843 (1981).ADS View Article
    10.Ts. Tsogbayar, Phys. Part. Nucl. Lett. 6, 114 (2009).View Article
    11.T. C. Scott, M. Aubert–Frecon, and J. Grotendorst, Chem. Phys. 324, 323 (2006).ADS View Article
    12.C. B. Mendl, J. Comput. Phys. 231, 5157 (2012).ADS View Article
    13.W.JaskólskiPhys.Rep.271, 1 (1996)ADS View Article
    14.K. D. Sen, V. I. Pupyshev, and H. E. Montgomery, Jr., Adv. Quantum Chem. 57, 25 (2009).ADS View Article
    15.C. Diaz-Garcia and S. A. Cruz, Int. J. Quantum Chem. 108, 1572 (2008).ADS View Article
    16.C. Zicovich-Wilson, W. Jaskólski, and J. Planelles, Int. J. Quantum Chem. 54, 61 (1995).View Article
    17.E. Ley–Koo and S. A. Cruz, J. Chem. Phys. 74, 4603 (1981).
    18.J.M.H.LoM.KlobukowskiandG.H.F.DiercksenJ.SabinAdv.QuantumChem.48, 59 (2005}ADS View Article
    19.K. K. Singh, Physica 30, 211 (1964).ADS View Article
    20.R. LeSar and D. R. Herschbach, J. Phys. Chem. 87, 5202 (1983).View Article
    21.S. A. Cruz and R. Colin-Rodriguez, Int. J. Quantum Chem. 109, 3041 (2009).ADS View Article
    22.Y. X. Ren, T. Y. Ng, and K. M. Liew, Carbon 44, 397 (2006).View Article
    23.V. K. Dolmatov, A. S. Baltenkov, J.-P. Connerade, and S. T. Manson, Radiat. Phys. Chem. 70, 417 (2004).ADS View Article
    24.P. V. Yurenev, A. V. Scherbinin, and V. I. Pupyshev, Int. J. Quantum Chem. 106, 2201 (2006).ADS View Article
    25.R. Caputo and A. Alavi, Mol. Phys. 101, 1781 (2003).ADS View Article
    26.Y. Fukai, The Metal–Hydrogen System. Basic Bulk Properties, 2nd ed., (Springer–Verlag, Berlin, 2005).
    27.R. J. Hemley, Annu. Rev. Phys. Chem. 51, 763 (2000).ADS View Article
    28.E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).ADS View Article
    29.K. A. Sveshnikov and A. V. Tolokonnikov, Moscow Univ. Phys. Bull. 68, 13 (2013).ADS View Article
    30.K. Sveshnikov and A. Roenko, Phys. B: Condens. Matter 427, 118 (2013).ADS View Article
    31.A. Tolokonnikov, Am. J. Mod. Phys. 3, 73 (2014).View Article
    32.A. Hosaka and H. Toki, Phys. Rep. 277, 65 (1996); Quarks, Baryons and Chiral Symmetry (Singapoure: World Sci., 2001).ADS View Article
    33.A. Chodos, R. J. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D: Part. Fields 9, 3471 (1974).MathSciNet ADS View Article
    34.L. D. Landau and E. M. Lifshits, Quantum Mechanics, Non-Relativistic Theory (Pergamon, Oxford, 1965; Nauka, Moscow, 1976).
    35.E. V. Vybornyi, Theor. Math. Phys. 178, 93 (2014).MathSciNet View Article
    36.T. F. Pankratova, Problems of Mathematical Physics. Vol. 11. Differential Equations and Theory of Dispersion (Leningrad, 1986) [in Russian].
  • 作者单位:K. A. Sveshnikov (1)
    A. V. Tolokonnikov (1)

    1. Department of Physics, Moscow State University, Moscow, 119991, Russia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Russian Library of Science
  • 出版者:Allerton Press, Inc. distributed exclusively by Springer Science+Business Media LLC
  • ISSN:1934-8460
文摘
It is shown that reconstruction of the low-lying energy levels of the H 2 + ion under conditions of confinement in a given spatial volume is substantially more significant as compared to the confinement by simple potential barrier. Depending on the cavity parameters, the ground-state binding energy of H 2 + could be significantly greater than that of the free ion, while the behavior of the lowest molecular term 2Σ g + of the ion turns out to be quite different when considered as a function of the internuclear distance. In particular, two minima might occur in 2Σ g + , while the relationship between them could be sufficiently different depending on the cavity parameters, which is shown on the phase diagram that was obtained in the work. We studied the case of a “mexican hat-structure of the effective ion potential in detail. As a result, the lowest electronic level of ion splits into the ground state level and the first excited one, with difference between them being as small as ?0- eV. As in the NH3 molecule, in the last case the lowest level gives rise to an effective two-level system that is separated from the vibrational and rotational modes by a wide energy gap. More concretely, calculation using the Neumann conditions that actually reproduce the confinement on a lattice of similar cavities shows that the splitting of ?0- eV occurs for the linear sizes of the confinement area of the order of some aB and a shell potential magnitude of ~10 eV.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700