Karyotype analysis and chromosomal evolution in Asian species of Corchorus (Malvaceae s. l.)
详细信息    查看全文
  • 作者:Prosanta Saha (1)
    Debabrata Sarkar (2)
    Avijit Kundu (2)
    Subhabrata Majumder (1)
    Swapan K. Datta (1)
    Karabi Datta (1)
  • 关键词:Chromosomal evolution ; Corchorus ; Cytogenetics ; Flow cytometry ; Genome size ; Jute ; Karyotype asymmetry ; ISSR ; Nuclear DNA content
  • 刊名:Genetic Resources and Crop Evolution
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:61
  • 期:6
  • 页码:1173-1188
  • 全文大小:1,172 KB
  • 参考文献:1. Acosta MC, Guerra M, Moscone EA (2012) Karyological relationships among some South American species of / Solanum (Solanaceae) based on fluorochrome banding and nuclear DNA amount. Plant Syst Evol 298:1547-556. doi:10.1007/s00606-012-0657-x k" title="It opens in new window">CrossRef
    2. Akashi R, Fancy NN, Tanmoy AM, Khan H (2012) Estimation of genome size of jute ( / Corchorus capsularis (L.) var. CVL-1 using flow cytometry. Plant Tissue Cult Biotechnol 22:83-6. doi:10.3329/ptcb.v22i1.11264 k" title="It opens in new window">CrossRef
    3. Akter J, Islam MS, Sajib AA, Ashraf N, Haque S, Khan H (2008) Microsatellite markers for determining genetic identities and genetic diversity among jute cultivars. Aust J Crop Sci 1:97-07
    4. Alam SS, Rahman ANMRB (2000) Karyotype analysis of three / Corchorus species. Cytologia 65:443-46. doi:10.1508/cytologia.65.443 k" title="It opens in new window">CrossRef
    5. Alam SS, Khatun M, Sultana SS (2011) Differential chromosome banding and isozyme assay in / Corchorus aestuans L. Bangladesh J Bot 40:47-2. doi:10.3329/bjb.v40i1.7997 k" title="It opens in new window">CrossRef
    6. Almeida CCDS, Carvalho PCDL, Guerra M (2007) Karyotype differentiation among / Spondias species and the putative hybrid Umbu-cajá (Anacardiaceae). Bot J Linn Soc 155:541-47. doi:10.1111/j.1095-8339.2007.00721.x k" title="It opens in new window">CrossRef
    7. Andras SC, Hartman TPV, Alexander J, McBride R, Marshall JA, Power JB, Cocking EC, Davey MR (2000) Combined PI–DAPI staining (CPD) reveals NOR asymmetry and facilitates karyotyping of plant chromosomes. Chromosome Res 8:387-91. doi:10.1023/A:1009258719052 k" title="It opens in new window">CrossRef
    8. Arangzeb S (1994) Cross compatibility of eight wild species of jute with cultivars and among themselves. Dhaka University, Dhaka
    9. Arano H (1963) Cytological studies in subfamily Carduoideae (Compositae) of Japan. IX. The karyotype analysis and phylogenetic considerations on / Pertya and / Ainsliaea. Bot Mag (Tokyo) 76:32-9 k" title="It opens in new window">CrossRef
    10. Arano H, Saito H (1980) Cytological studies in family Umbelliferae. 5. Karyotypes of seven species in subtribe Seselinae. Kromosomo 2:471-80
    11. Backeljau T, Bruyn LD, Wolf HD, Jordaens K, Dongen SV, Verhagen R, Winnepenninckx B (1995) Random amplified polymorphic DNA (RAPD) and parsimony methods. Cladistics 11:119-30. doi:10.1111/j.1096-0031.1995.tb00083.x k" title="It opens in new window">CrossRef
    12. Banerjee I (1932) Chromosome numbers of Indian crop plants. A. chromosome numbers in jute. J Indian Bot Soc 11:82-5
    13. Basu A, Ghosh M, Meyer R, Powell W, Basak SL, Sen SK (2004) Analysis of genetic diversity in cultivated jute determined by means of SSR markers and AFLP profiling. Crop Sci 44:678-85. doi:10.2135/cropsci 2004.6780 k" title="It opens in new window">CrossRef
    14. Begum R, Zakrzewski F, Menzel G, Weber B, Alam SS, Schmidt T (2013) Comparative molecular cytogenetic analyses of a major tandemly repeated DNA family and retrotransposon sequences in cultivated jute / Corchorus species (Malvaceae). Ann Bot 112:123-34. doi:10.1093/aob/mct103 k" title="It opens in new window">CrossRef
    15. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467-90. doi:10.1093/aob/mcq258 k" title="It opens in new window">CrossRef
    16. Benor S (2011) Phylogeny of the genus / Corchorus (Malvaceae s. l.) and diversity analyses in selected species: evidence from morphology, flow cytometry, and molecular data. Dissertation, Universit?t Kassel
    17. Benor S, Blattner FR, Demissew S, Hammer K (2010) Collection and ethnobotanical investigation of / Corchorus species in Ethiopia: potential leafy vegetables for dry regions. Genet Resour Crop Evol 57:293-06. doi:10.1007/s10722-009-9470-y k" title="It opens in new window">CrossRef
    18. Benor S, Fuchs J, Blattner FR (2011) Genome size variation in / Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits. Genome 54:575-85. doi:10.1139/g11-021 k" title="It opens in new window">CrossRef
    19. Datta RM, Panda BS, Roy K, Bose MM, De TK (1966) Cytotaxonomic studies of different / Corchorus (jute) species I. Bot Mag (Tokyo) 79:467-73 k" title="It opens in new window">CrossRef
    20. Datta RM, Mukhopadhaya D, Panda BS, Sasmal PK (1975) Cytotaxonamic studies of different / Corchorus (jute) species II. Cytologia 40:685-92. doi:10.1508/cytologia.40.685
    21. Dole?el J, Barto? J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99-10. doi:10.1093/aob/mci005 k" title="It opens in new window">CrossRef
    22. Edmonds JM (1990) Herbarium survey of African / Corchorus L. species. International Board for Plant Genetic Resources, Rome
    23. Greilhuber J, Speta F (1976) C-banded karyotypes in the / Scilla hohenackeri group, / S. persica and / Puschkinia (Liliaceae). Plant Syst Evol 126:149-88. doi:10.1007/BF00981669 k" title="It opens in new window">CrossRef
    24. Greilhuber J, Dole?el J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size-and ‘C value-to describe nuclear DNA contents. Ann Bot 95:255-60. doi:10.1093/aob/mci019 k" title="It opens in new window">CrossRef
    25. Guerra M (2009) Chromosomal variability and the origin of / Citrus species. In: Mahoney CL, Springer DA (eds) Genetic diversity. Nova Science, New York, pp 51-8
    26. Haque S, Begum S, Sarker RH, Khan H (2007) Determining genetic diversity of some jute varieties and accessions using RAPD markers. Plant Tissue Cult Biotechnol 17:183-91. doi:10.3329/ptcb.v17i2.3239
    27. Hawkins JS, Grover CE, Wendel JF (2008) Repeated big bangs and the expanding universe: directionality in plant genome size evolution. Plant Sci 174:557-62. doi:10.1016/j.plantsci.2008.03.015 k" title="It opens in new window">CrossRef
    28. Huziwara Y (1962) Karyotype analysis in some genera of Compositae. VIII. Further studies on the chromosomes of Aster. Am J Bot 49:116-19 k" title="It opens in new window">CrossRef
    29. Khatun M, Alam SS (2010) Confirmation of species status of / Corchorus trilocularis and / C. pseudo- / olitorius by differential chromosome banding and isozyme assay. Cytologia 75:83-8. doi:10.1508/cytologia.75.83 k" title="It opens in new window">CrossRef
    30. Kundu A, Sarkar D, Bhattacharjee A, Topdar N, Sinha MK, Mahapatra BS (2011) A simple ethanol wash of the tissue homogenates recovers high-quality genomic DNA from / Corchorus species characterized by highly acidic and proteinaceous mucilages. Electron J Biotechnol 14:1. doi:10.2225/vol14-issue1-fulltext-4
    31. Kundu A, Topdar N, Sarkar D, Sinha MK, Ghosh A, Banerjee S, Das M, Balyan HS, Mahapatra BS, Gupta PK (2013) Origins of white ( / Corchorus capsularis L.) and dark ( / C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol 22:372-91. doi:10.1007/s13562-012-0165-7 k" title="It opens in new window">CrossRef
    32. Lavania UC, Srivastava S (1992) A simple parameter of dispersion index that serves as an adjunct to karyotype asymmetry. J Biosci 17:179-82 k" title="It opens in new window">CrossRef
    33. Leitch IJ, Beaulieu JM, Cheung K, Hanson L, Lysak M, Fay MF (2007) Punctuated genome size evolution in Liliaceae. J Evol Biol 20:2296-308. doi:10.1111/j.1420-9101.2007.01416.x k" title="It opens in new window">CrossRef
    34. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201-20. doi:10.1111/j.1601-5223.1964.tb01953.x k" title="It opens in new window">CrossRef
    35. Levin DA (2002) The role of chromosome change in plant evolution. Oxford University Press, New York
    36. Maity S, Datta AK (2009) Karyomorphology in nine species of jute ( / Corchorus L., Tiliaceae). Cytologia 74:273-79. doi:10.1508/cytologia.74.273 k" title="It opens in new window">CrossRef
    37. Mandal A, Datta AK (2011) Secondary chromosome associations and cytomixis in / Corchorus spp. Cytologia 76:337-43. doi:10.1508/cytologia.76.337 k" title="It opens in new window">CrossRef
    38. Mir RR, Rustgi S, Sharma S, Singh R, Goyal A, Kumar J, Gaur A, Tyagi AK, Khan H, Sinha MK, Balyan HS, Gupta PK (2008) A preliminary genetic analysis of fibre traits and the use of new genomic SSRs for genetic diversity in jute. Euphytica 161:413-27. doi:10.1007/s10681-007-9597-x k" title="It opens in new window">CrossRef
    39. Morakinyo JA, Baderinwa AO (1997) Karyotype analysis and meiotic chromosome behaviour in / Corchorus olitorius, / C. tridens and / C. aestuans. Niger J Genet 12:20-8
    40. Paszko B (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39-8. doi:10.1007/s00606-005-0389-2 k" title="It opens in new window">CrossRef
    41. Perrier X, Jacquemoud-Collet JP (2006) DARwin software, version 5.0.158. CIRAD. http://darwin.cirad.fr/darwin
    42. Peruzzi L, Ero?lu HE (2013) Karyotype asymmetry: again, how to measure and what to measure. Comp Cytogenet 7:1-. doi:10.3897/CompCytogen.v7il.4431 k" title="It opens in new window">CrossRef
    43. Peruzzi L, Leitch IJ, Caparelli KF (2009) Chromosome diversity and evolution in Liliaceae. Ann Bot 103:459-75. doi:10.1093/aob/mcn230 k" title="It opens in new window">CrossRef
    44. Rao NS, Datta RM (1953) Chromosomes of the genus / Corchorus. Nature 171:754. doi:10.1038/171754a0 k" title="It opens in new window">CrossRef
    45. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526-30 k" title="It opens in new window">CrossRef
    46. Roy A, Bandyopadhyay A, Mahapatra AK, Ghosh SK, Singh NK, Bansal KC, Koundal KR, Mohapatra T (2006) Evaluation of genetic diversity in jute ( / Corchorus species) using STMS, ISSR and RAPD markers. Plant Breed 125:292-97. doi:10.1111/j.1439-0523.2006.01208.x k" title="It opens in new window">CrossRef
    47. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-25
    48. Samad MA, Kabir G, Islam AS (1992) Interphase nuclear structure and heterochromatin in two species of / Corchorus and their F1 hybrid. Cytologia 57:21-5. doi:10.1508/cytologia.57.21 k" title="It opens in new window">CrossRef
    49. Sarkar D, Kundu A, Saha A, Mondal NA, Sinha MK, Mahapatra BS (2011) First nuclear DNA amounts in diploid (2 / n?=?2 / x?=?14) / Corchorus spp. by flow cytometry: genome sizes in the cultivated jute species ( / C. capsularis L. and / C. olitorius L.) are ~300% smaller than the reported estimate of 1100-350 Mb. Caryologia 64:147-53 k" title="It opens in new window">CrossRef
    50. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109-15. doi:10.1016/j.pbi.2007.01.001 k" title="It opens in new window">CrossRef
    51. Sharma AK, Roy M (1958) Cytological studies in jute and its allies. Agron Lusit 20:5-5
    52. Sharma S, Sarkar D, Pandey SK (2010) Phenotypic characterization and nuclear microsatellite analysis reveal genomic changes and rearrangements underlying androgenesis in tetraploid potatoes ( / Solanum tuberosum L.). Euphytica 171:313-26. doi:10.1007/s10681-009-9983-7 k" title="It opens in new window">CrossRef
    53. Sinha MK, Kar CS, Ramasubramanian T, Kundu A, Mahapatra BS (2011) / Corchorus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, industrial crops. Springer, Berlin, pp 29-1 k" title="It opens in new window">CrossRef
    54. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London
    55. Swofford DL, Olsen GJ (1990) Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer Associates Inc, Sunderland, pp 411-01
    56. Tao A-F, Qi J-M, Li M-L, Fang P-P, Lin L-H, Xu J-T (2012) Origin and evolution of jute analysed by SRAP and ISSR methods. Sci Agric Sin 45:16-5. doi:10.3864/j.issn.0578-1752.2012.01.003
    57. The Angiosperm Phylogeny Group (1998) An ordinal classification for the families of flowering plants. Ann Mol Bot Gard 85:531-53 k" title="It opens in new window">CrossRef
    58. Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus / Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145-61. doi:10.1007/PL00013869 k" title="It opens in new window">CrossRef
    59. Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in / Arabidopsis/ / Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63-4. doi:10.1111/j.1365-313X.2006.02762.x k" title="It opens in new window">CrossRef
  • 作者单位:Prosanta Saha (1)
    Debabrata Sarkar (2)
    Avijit Kundu (2)
    Subhabrata Majumder (1)
    Swapan K. Datta (1)
    Karabi Datta (1)

    1. Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
    2. Biotechnology Unit, Division of Crop Improvement, Central Research Institute for Jute and Allied Fibres (CRIJAF), Barrackpore, Kolkata, 700120, West Bengal, India
  • ISSN:1573-5109
文摘
Here, we report the karyotypes and mean haploid idiograms of the ten Asian Corchorus species (2n?=?2x?=?14). Chromosomes were small, with a mean chromosome length of 2.30?μm. The largest chromosome was recorded in C. pseudo-olitorius (3.50?μm) and the shortest in C. pseudocapsularis (1.60?μm). The karyotypes of the two cultivated species (C. capsularis and C. olitorius) and C. pseudo-olitorius were the most diverse and specialized, whereas those of C. depressus and C. trilocularis were the least diverse. C. fascicularis had the most asymmetrical and C. urticifolius the most symmetrical karyotypes. An increase in genome size was accompanied by increasing karyotype diversity in terms of morphologically distinct chromosome types and interchromosomal asymmetry, with uneven distribution of additional DNA throughout the karyotype. A positive correlation between interchromosomal asymmetry and dispersion index suggested that size differences between chromosomes were mainly associated with karyotype asymmetry. Karyotypes of the Corchorus species became progressively asymmetrical in the course of evolution. Relationships among the ten Corchorus species were defined by using a neighbor-joining tree inferred from inter-simple sequence repeat data. C. fascicularis and C. pseudocapsularis, with shorter karyotypes and smaller genomes, were closely related to C. pseudo-olitorius and C. capsularis, respectively, which were characterized by relatively longer karyotypes and larger genomes. However, the two cultivated species with different levels of interchromosomal asymmetries, dispersion indices and genome sizes were distantly related. Taking this molecular evidence into consideration, we have discussed chromosomal evolution in relation to karyological data including genome size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700