Loading and bioavailability of iron in cereal grains
详细信息    查看全文
  • 作者:Soumitra Paul (1)
    Nusrat Ali (1)
    Sailendra N. Sarkar (1)
    Swapan K. Datta (1) (2)
    Karabi Datta (1)
  • 关键词:Cereals ; Phytosiderophores ; Transporters ; Ferritin ; Biotechnology ; Iron
  • 刊名:Plant Cell, Tissue and Organ Culture
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:113
  • 期:3
  • 页码:363-373
  • 全文大小:499KB
  • 参考文献:1. Ali N, Datta K, Datta SK (2010) RNA interference in designing transgenic crops. GM Crops 1:207鈥?13 CrossRef
    2. Aoyama T, Kobyashi T, Takahashi M, Nagasaka S, Usuda K et al (2009) / Osysl18 is a rice iron (III)-deoxymugienic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol 70:681鈥?92 CrossRef
    3. Barberon M, Zelazny E, Robert S, Friml J, Conejero G, Curie C, Friml J, Vert G (2011) Monoubiquitin-dependent endocytosis of the IRON REGULATED TRANSPORTER1(IRT1) transporter controls iron uptake in plants. Proc Natl Acad Sci USA 108:12985鈥?2986 CrossRef
    4. Bashir K, Ishimaru Y, Nishizawa NK (2010) Iron uptake and loading into rice grains. Rice 3:122鈥?30 CrossRef
    5. Bhuiyan MSU, Min SR, Jeong JW, Sultana S, Choi KS, Lee Y, Liu JR (2011a) Overexpression of AtATM3 in / Brassica / juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tiss Organ Cult 107:69鈥?7 CrossRef
    6. Bhuiyan MSU, Min SR, Jeong JW, Sultana S, Choi KS, Song YW, Lee Y, Lim YP, Liu JR (2011b) Overexpression of a yeast cadmium factor I (YCF1) enhances heavy metal tolerance and accumulation in / Brassica / juncea. Plant Cell Tiss Organ Cult 105:85鈥?1 CrossRef
    7. Bovell-Benjamin AC, Allen LH, Frankel EN, Guinard JX (1999) Sensor quality and lipid oxidation of maize porridge as affected by iron amino acid chelates and EDTA. J Food Sci 64:371鈥?76 CrossRef
    8. Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraiine B, Cellier F, Gaymard F (2010) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811鈥?22 CrossRef
    9. Brinch-Pedersen H, Borg S, Tauris B, Holm PB (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 46:308鈥?26 CrossRef
    10. Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of durum wheat with zinc and iron. Cereal Chem 87:10鈥?0 CrossRef
    11. Cheng L, Wang F, Shou H, Huang F, Zheng L et al (2007) Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice. Plant Physiol 145:1647鈥?657 CrossRef
    12. Conte S, Walker EL (2011) Transporter contributing to iron trafficking in plants. Mol Plant. doi:10.1093/mp/ssr015
    13. Coulibaly A, Kouakou B, Chen J (2011) Phytic acid in cereal grains: structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality. Am J Plant Nutr Fertil Tech 1:1鈥?2 CrossRef
    14. Curie C, Cassin G, Couch D, Divol F, Higuchi K et al (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1鈥?1 CrossRef
    15. Datta SK, Khush GS (2002) Improving rice to meet food and nutrient needs: biotechnological approaches. J Crop Prod 6:229鈥?47 CrossRef
    16. Drakakai G, Christou P, Stoger S (2000) Constitutive expression of soybean ferritin cDNA in transgenic wheat and rice results in increased iron levels in vegetative tissues not in seeds. Transgenic Res 9:445鈥?52 CrossRef
    17. Drakakai G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm specific coexpression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869鈥?80 CrossRef
    18. FAO/WHO (1999) Joint FAO/WHO expert committee on food additives. 53rd meeting. WHO, Geneva, Switzerland
    19. Gillespie S and Haddad L (2001) Malnutrition in Asia and the Pacific: nutrition and development series, attacking the double burden of malnutrition in Asia and Pacific. Asian Development Bank, International Food Policy Research Institute, pp 5鈥?4
    20. Glahn RP, Chen SQ, Welch RM, Gregorio GB (2002) Comparison of iron bioavailability from 15 rice genotypes: studies using an invitro digestion/caco 2 cell culture model. J Agr Food Chem 50:3586鈥?591 CrossRef
    21. Gomez-Galera S, Sudhakar D, Pelacho AM, Capell T, Christou P (2012) Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress. Plant Physiol Biochem 53:46鈥?3 CrossRef
    22. Gordon N (2003) Iron deficiency and the intellect. Brain Dev 25:3鈥? CrossRef
    23. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282鈥?86 CrossRef
    24. Guerinot ML (2001) Improving rice yields鈥攊roning out the details. Nat Biotechnol 19:417鈥?18 CrossRef
    25. Haydon MJ, Kawachi M, Wirtz M, Hillmer S, Hell R, Kramer U (2012) Vacuolar Nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell. doi:10.1105/tpc.111.095042
    26. Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2012.03.010
    27. Hurell RF (2002) Fortification: overcoming technical and practical barriers, forging effective strategies to combat iron deficiency. J Nutr 132:806鈥?12
    28. Inoue H, Kobayashi T, Nozoye T, Takahashi M, Kakei Y et al (2009) Rice / OsYSL15 is an iron-regulated iron (III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem 284:3470鈥?479 CrossRef
    29. Ishimaru Y, Kim SA, Tsukamoto T, Oki HTK, Watanabe S et al (2007) Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc Natl Acad Sci USA 104:7373鈥?378 CrossRef
    30. Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T et al (2010) Rice metal鈥搉icotianamine聽transporter,聽 / OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379鈥?90 CrossRef
    31. Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y et al (2011) A rice phenolics efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele. J Biol Chem 286:24649鈥?4655 CrossRef
    32. Johnson AAT, Kyriacou B, Damien L, Callahan DL, Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overexpression of the / Osnas gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE 6:e24476 CrossRef
    33. Kakei Y, Yamaguchi I, Kobyashi T, Takahashi M, Nakanishi H, Yamakawa T, Nishizawa NK (2009) A highly sensitive, quick and simple quantification method for nicotianamine and 2鈥?deoxymugienic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants. Plant Cell Physiol 50:1988鈥?993 CrossRef
    34. Kawai S, Kamei S, Matsuda Y, Ando R, Kondo S, Ishizawa A, Alam S (2001) Concentrations of iron and phytosiderophores in xylem sap of iron-deficient barley plants. Soil Sci Plant Nutr 47:265鈥?72 CrossRef
    35. Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:273鈥?280
    36. King JC (2002) Evaluation the impact of plant biofortification on human biofortication, symposium: plant Breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:511鈥?13
    37. Kruger C, Berkowitz O, StephanUdo W, Hell R (2002) A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of / Ricinus communis L. J Biol Chem 277:25062鈥?5069 CrossRef
    38. Kuwano M, Mimura T, Takaiwa F, Yoshida KT (2009) Generation of stable 鈥榣ow phytic acid鈥?transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotech J 7:96鈥?05 CrossRef
    39. Lee S, An G (2009) Over-expression of / OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408鈥?16 CrossRef
    40. Lee S, Chiecko JC, Kim SA, Walker EL, Lee Y, Guerinot ML, An G (2009a) Disruption of / Osysl15 leads to iron inefficiency in rice plants. Plant Physiol 150:786鈥?00 CrossRef
    41. Lee S, Jeon US, Lee SJ, Kim YK, Persson DP et al (2009b) Iron fortification of rice seeds through activation the nicotinamine synthase gene. Proc Natl Acad Sci USA 106:22014鈥?2019 CrossRef
    42. Lee S, Kim SA, Lee J, Guerinot ML, An G (2010) Zinc deficiency-inducible OsZIP8 encodes a plasma membrane localized zinc transporter in rice. Mol Cells 29:551鈥?58.
    43. Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK et al (2011) Bio-available zinc in rice seed is increased by activation tagging of / nicotianamine synthase. Plant Biotech J 9:865鈥?73 CrossRef
    44. Lin YF, Liang HM, Yang SY, Boch A, Clemens S et al (2009) Arabidopsis IRT3 is a zinc regulated and plasma membrane localized zinc/iron transporter. New Phytol 182:392鈥?04 CrossRef
    45. Lombi E, Smith E, Hansen TH, Paterson D, DeJonge MD et al (2011) Megapixel imaging of (micro) nutrients in mature barley grains. J Exp Bot 62:273鈥?82 CrossRef
    46. Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158鈥?65 CrossRef
    47. Lucca P, Hurell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392鈥?97 CrossRef
    48. Marschner H, Romheld V, Kissel M (1986) Different strategies in higer plants in mobilization and uptake of iron. J Plant Nutr 9:695鈥?13 CrossRef
    49. Masuda H, Usuda K, Kobyashi T, Ishimaru Y, Kakei Y et al (2009) Overexpression of the barley nicotianamine synthase gene / HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2:155鈥?66 CrossRef
    50. Masuda T, Goto F, Yoshihara T, Mikami B (2010) Crystal structure of plant ferritin reveals a novel metal binding sites that functions as a transit site for the metal transfer in ferritin. J Biol Chem 285:4049鈥?059 CrossRef
    51. Moore KL, Zhao FJ, Gritsch CS, Tosi P, Hawkesford MJ, McGrath SP, Shewry PR, Grovenor CRM (2012) Localisation of iron in wheat grain using high resolution secondary ion mass spectroscopy. J Cereal Sci 55:183鈥?87 CrossRef
    52. Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad and the ionome. Chem Rev 109:4553鈥?567 CrossRef
    53. Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F et al (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83鈥?4 CrossRef
    54. Nozoye T, Inoue H, Takahashi M, Ishimaru Y, Nakanishi H, Mori S, Nishizawa NK (2007) The expression of iron homeostasis-related genes during rice germination. Plant Mol Biol 64:35鈥?7 CrossRef
    55. Nozoye T, Nagasaka S, Kobyashi T, Takahashi M, Sato Y, Uozumi N, Nakanishi H, Nishizawa NK (2011) Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants. J Biol Chem 286:5446鈥?454 CrossRef
    56. Ogo Y, Itai RN, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa NK (2007) The rice bHLH protein OslRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J 51:366鈥?77 CrossRef
    57. Ozturk L, Yazici MA, Yucel C, Torum A, Cekic C, Bagci A, Ozkan H, Barun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plantarum 128:144鈥?52 CrossRef
    58. Paul S, Ali N, Gayen D, Datta SK, Datta K (2012) Molecular breeding of / Osfer2 gene to increase iron nutrition in rice. GM Crop Food 3:310鈥?16
    59. Persson DP, Hansen TH, Laursen KH, Schjoerring JK, Husted S (2009) Simultaneousiron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics 1:418鈥?26 CrossRef
    60. Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotech J 2:113鈥?25 CrossRef
    61. Qu L, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression of ferritin in transgenic rice seeds. Planta 222:225鈥?33 CrossRef
    62. Raboy V (2007) The ABCs of low-phytate crops. Nat Biotechnol 25:874鈥?75 CrossRef
    63. Ramirez M, Simontacchi M, Murgia I, Zabaleta E, Lamattina L (2011) Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: a well equipped team to preserve plant iron homeostasis. Plant Sci 181:582鈥?92 CrossRef
    64. Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in / Arabidopsis. Plant J 57:400鈥?12 CrossRef
    65. Regvar M, Eichert D, Kaulich B, Gianoncelli A, Pongrac P, Vogel-Mikus K, Kreft I (2011) New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy. J Exp Bot 62:3929鈥?939 CrossRef
    66. Ricachenevsky FK, Sperotto RA, Menguer PK, Sperb ER, Lopes KL, Fett JP (2011) ZINC-INDUCED FACILITATOR-l LIKE family in plants: lineage specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs. BMC Plant Biol 11:1鈥?2 CrossRef
    67. Shi J, Wang H, Schellin K, Li B, Faller M et al (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930鈥?37 CrossRef
    68. Smart KE, Smith JAC, Kilburn MR, Martin BGH, Hawes C, Grovenor CRM (2010) High-resolution elemental localization in vacuolate plant cells by nanoscale secondary ion mass spectrometry. Plant J 63:870鈥?79 CrossRef
    69. Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying / OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234:331鈥?45 CrossRef
    70. Sperotto RA, Ricachenevsky FK, Duarte GL, Boff KL, Lopes KL, Sperb ER, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of / OsNAC5, a new ABA-dependent transcription factor. Planta 230:985鈥?002 CrossRef
    71. Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta AZ (2008) Potential impacts of iron biofortification in India. Soc Sci Med 66:1797鈥?808 CrossRef
    72. Stein RJ, Ricachenevsky FK, Fett JP (2009) Differential regulation of two rice ferritin genes ( / OsFER1 and / OsFER2). Plant Sci 177:563鈥?69 CrossRef
    73. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612鈥?2617 CrossRef
    74. Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice ( / Oryza sativa L): implications for the phytic acid biosynthetic pathway. Gene 405:55鈥?4 CrossRef
    75. Suzuki M, Morikawa KC, Nakanishi H, Takahashi M, Saigusa M, Mori S, Nishizawa NK (2008) Transgenic rice lines that include barley genes have increased tolerance to low iron availability in a calcareous paddy soil. Soil Sci Plant Nutr 54:77鈥?5 CrossRef
    76. Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance to rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466鈥?69 CrossRef
    77. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263鈥?280 CrossRef
    78. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor / OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genom 284:173鈥?83 CrossRef
    79. Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling. J Exp Bot 60:1333鈥?347 CrossRef
    80. Theil EC (2003) Ferritin: at the crossroads of iron and oxygen metabolism. In: Metal-binding proteins and trace element metabolism. J Nutr 133:1549鈥?553
    81. Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371鈥?78 CrossRef
    82. Vasconcelos M, Musetti V, Li C, Datta SK, Grusak MA (2004) Functional analysis of transgenic rice ( / Oryza sativa L.) transformed with Arabidopsis thaliana ferric reductase (Atfro2). Soil Sci Plant Nutr 50:1151鈥?157 CrossRef
    83. Vert G, Briat JF, Curie C (2001) / Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181鈥?89 CrossRef
    84. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth. Plant Cell 14:1223鈥?233 CrossRef
    85. von Wiren N, Klair S, Bansal S, Briat J, Khodr H, Shioiri RA, Leigh R, Hider C (1999) Nicotianamine chelates both Fe III and Fe II. Implications for metal transport in plants. Plant Physiol 119:1107鈥?114 CrossRef
    86. Walker EL, Waters BM (2011) The role of transition metal homeostasis in plant seed development. Curr Opin Plant Biol 14:318鈥?24 CrossRef
    87. Wang YX, Specht A, Horst WJ (2011) Stable isotope labeling and聽zinc聽distribution in grains studied by laser ablation ICP-MS in an ear culture system reveals聽zinc transport barriers during grain filling in聽wheat. New Phytol 189:428鈥?37 CrossRef
    88. Waters BM, Sankaran RP (2011) Moving micronutrients from soil to seeds: genes and physiological process from a biofortification perspective. Plant Sci 180:562鈥?74 CrossRef
    89. WHO (2002) The World Health Report. Geneva, WHO publishing web. http://www.who.int/nutrition/topics/ida
    90. WHO (2008) Micronutrient deficiencies: iron deficiency anemia. Geneva, WHO publishing web. http://www.who.int/nutrition/topics/ida
    91. Writh J, Poletti S, Aeschlimann B, Yakandawala N, Drosse B et al (2009) Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotech J 7:631鈥?44 CrossRef
    92. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878鈥?883 CrossRef
    93. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297鈥?05 CrossRef
    94. Zancani M, Peresson C, Biroccio A, Federici G, Urbani A et al (2004) Evidence for the presence of ferritin in plant mitochondria. Eur J Biochem 271:3657鈥?664 CrossRef
    95. Zheng L, Cheng Z, Ai C, Jiang X, Bei X et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS ONE 5:e10190 CrossRef
    96. Zheng L, Fuji M, Yamaji N, Sasaki A, Yamane M, Sakurai I, Sato K, Ma JF (2011) Isolation and charecterisation of barley yellow stripe-like gene / Hvysl5. Plant Cell Physiol 52:765鈥?74 CrossRef
    97. Zok A, Olah R, Hideg E, Horvath VG, Kos PB, Majer P, Varadi GY, Szegedi E (2010) Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tiss Organ Cult 100:339鈥?44 CrossRef
  • 作者单位:Soumitra Paul (1)
    Nusrat Ali (1)
    Sailendra N. Sarkar (1)
    Swapan K. Datta (1) (2)
    Karabi Datta (1)

    1. Plant Molecular Biology and Biotechnology Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, WB, India
    2. Division of Crop Science, Indian Council of Agricultural Research (ICAR), Krishi Bhavan, Dr. Rajendra Prasad Road, New Delhi, 110114, India
  • ISSN:1573-5044
文摘
Cereal plants take up iron from the soil via a phytosiderophore-mediated chelation system. Following root absorption, iron is transported through the xylem and phloem of the plant with the help of a variety of efflux and influx transporters belonging to the Zrt Irt-like protein (ZIP) and yellow stripe-like (YSL) protein families. Iron-regulated transporter1, a member of the ZIP family, mobilises ferrous [Fe(II)] ions, while several YSL family members such as YSL2, YSL15 and YSL18 can transport both ferric [Fe(II)] and ferrous [F`III)] ions into developing grains via chelation with mugineic acid or its derivatives. The iron is accumulated largely in the outer aleurone layer and embryo of the grains, which are removed during milling, leaving behind consumable endosperm that contains a very low amount of iron. This review highlights the uptake, transport and loading mechanisms for iron in cereal grains and provides an overview of strategies adopted for developing highly iron-enriched grains.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700