Sand dunes as potential sources of dust in northern China
详细信息    查看全文
  • 作者:Mark R. Sweeney ; HuaYu Lu ; MengChun Cui ; Joseph A. Mason…
  • 关键词:Coppice dunes ; Transverse dunes ; Dust ; PI ; SWERL ; Desert
  • 刊名:Science China Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:760-769
  • 全文大小:1,041 KB
  • 参考文献:Amit R, Enzel Y, Mushkin A, Gillespie A, Jigjidsurengiin B, Crouvi O, Vandenberghe J, An Z. 2014. Linking coarse silt production in Asian sand deserts and quaternary accretion of the Chinese Loess Plateau. Geology, 42: 23–26CrossRef
    Bacon S N, Mc Donald E V, Amit R, Enzel Y, Crouvi O. 2011. Total suspended particulate matter emissions at high friction velocities from desert landforms. J Geophys Res, 116: F03019, doi: 10.1029/2011JF001965
    Bagnold R A. 1941. The Physics of Blown Sand and Desert Dunes. London: Chapman and Hall
    Bird A, Stevens T, Rittner M, Vermeesch P, Carter A, Ando S, Garzanti E, Lu H, Nie J, Zeng, L, Zhang H, Xu, Z. 2015. Quaternary dust source variation across the Chinese Loess Plateau. Paleogeogr Paleoclimatol Paleoecol, 435: 254–264CrossRef
    Bullard J E, Mc Tainsh G H, Pudmezky C. 2004. Aeolian abrasion and modes of fine particle production from natural red dune sands: An experimental study. Sedimentology, 51: 1103–1125CrossRef
    Bullard J E, White K. 2005. Dust production and the release of iron oxides resulting from the aeolian abrasion of natural dune sands. Earth Surf Process Landf, 30: 95–106CrossRef
    Bullard J E, Harrison S P, Baddock M C, Drake N, Gill T, McTainsh G, Sun Y. 2011. Preferential dust sources: A geomorphological classification designed for use in global dust cycle models. J Geophys Res, 116: F04034, doi: 10.1029/2011JF002061
    Chen J, Li G J. 2011. Geochemical studies on the source region of Asian dust. Sci China Earth Sci, 54: 1279–1301CrossRef
    Creamean J M, Suski K J, Rosenfeld D, Cazorla A, DeMott, P J, Sullivan R C, White A B, Ralph F M, Minnis P, Comstock J M, Tomlinson J M, Prather K A. 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science, 339: 1572–1578CrossRef
    Crouvi O, Amit R, Enzel Y, Porat N, Sandler A. 2008. Sand dunes as major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quat Res, 70: 275–282CrossRef
    Crouvi O, Amit R, Enzel Y, Gillespie A R. 2010. Active sand seas and the formation of desert loess. Quat Sci Rev, 29: 2087–2098CrossRef
    Crouvi O, Shepanski K, Amit R, Gillespie A R, Enzel Y. 2012. Multiple dust sources in the Sahara Desert: The importance of sand dunes. Geophys Res Lett, 39: L13401, doi: 10.1029/2012GL052145CrossRef
    Cui M C, Lu H Y, Sweeney M, Mason J, Feng H, Xu Z. 2015. PM10 emission flux in the Tengger Desert and Mu Us sand field, northern China, measured by PI-SWERL (in Chinese). Chin Sci Bull, 60: 1–10
    Currell M J, Han D, Chen Z, Cartwright I. 2012. Sustainability of groundwater usage in northern China: Dependence of paleowaters and effects on water quality, quantity and ecosystem health. Hydrol Process, 26: 4050–4066CrossRef
    Dong Z, Wang X, Liu L. 2000. Wind erosion in arid and semiarid China: An overview. J Soil Water Conserv, 55: 439–444
    Du J, Yan P, Dong Y. 2010. The progress and prospects of nebkhas in arid areas. J Geogr Sci, 20: 712–728CrossRef
    Du H, Xue X, Wang T, Deng X. 2015. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res, 17: 193–204CrossRef
    Eytemezian V, Nikolich G, Ahonen S, Pitchford M, Sweeney M, Purcell R, Gillies J, Kuhns H. 2007. The Portable In Situ Wind Erosion Laboratory (PI-SWERL): A new method to measure PM10 windblown dust properties and potential for emissions. Atmos Environ, 41: 3789–3796CrossRef
    Eytemezian V, Gillies J A, Shinoda M, Nikolich G, King J, Bardis A R. 2014. Accounting for surface roughness on measurements conducted with PI-SWERL: Evaluation of a subjective visual approach and a photogrammetric technique. Aeolian Res, 13: 35–50CrossRef
    Ginoux P, Propsero J M, Gill T E, Hsu N C, Zhao M. 2012. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev Geophys, 50: RG3005, doi: 10.1029/2012RG000388
    Goossens D, Buck B. 2009. Dust dynamics in off-road vehicle trails: Measurements on 16 arid soil types, Nevada, USA. J Environ Manage, 90: 3458–3469CrossRef
    Grini A, Zender C S, Colarco P R. 2002. Saltation sandblasting behavior during mineral dust aerosol production. Geophys Res Lett, 29: 1868. doi: 10.1029/2002GL015248CrossRef
    Houser C A, Nickling W G. 2001. The factors influencing the abrasion efficiency of saltating grains on a clay-crusted playa. Earth Surf Process Landf, 26: 491–505CrossRef
    Jiao J T, Zhang X T, Wang X S. 2015. Satellite-based estimates of groundwater depletion on the Badain Jaran Desert, China. Nat Sci Reports, 5: 8960CrossRef
    King J, Etyemezian V, Sweeney M, Buck B J, Nikolich G. 2011. Dust emission variability at the Salton Sea, California, USA. Aeolian Res, 3: 67–79CrossRef
    Kohfeld K E, Reynolds R L, Pelletier J D, Nickling B. 2005. Linking the scales of observation, process, and modeling of dust emissions. Eos, 86: 113–114CrossRef
    Kuenen P H. 1960. Experimental abrasion 4: Eolian action. J Geol, 68: 427–449CrossRef
    Liu T S. 1985. Loess and the Environment (in Chinese). Beijing: Science Press
    Lu H, An Z. 1998. Pretreated methods on loess-paleosol samples granulometry. Chin Sci Bull, 43: 237–240CrossRef
    Lu H Y, Sun D H. 2000. Pathways of dust input into the Chinese Loess Plateau during the last glacial and interglacial periods. Catena, 40: 251–261CrossRef
    Mason J A, Swinehart J B, Lu H Y, Miao X, Cha P, Zhou Y. 2008. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s. Geomorphology, 102: 351–363CrossRef
    Muhs D R. 2013. The geologic record of dust in the Quaternary. Aeolian Res, 9: 3–48CrossRef
    Nickling W G, Eccelstone M. 1981. The effects of soluble salts on the threshold shear velocity of fine sand. Sedimentology, 28: 505–510CrossRef
    Okin G S, Bullard J E, Reynolds R L, Ballantine J C, Schepanski K, Todd M C, Belnap J, Baddock M C, Gill T E, Miller M E. 2011. Dust: Small-scale processes with global consequences. Eos, 92: 241–242CrossRef
    Prospero J M, Ginoux P, Torres O, Nicholson S E, Gill T E. 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) Absorbing Aerosol Product. Rev Geophys, 40, doi: 10.1029/2000RG000095
    Pye K. 1998. The nature, origin and accumulation of loess. Quat Sci Rev, 14: 653–667CrossRef
    Schepanski K, Tegen I, Macke A. 2012. Comparison of satellite based observations of Saharan dust source areas. IEEE Trans Geosci Remote Sensing, 123: 90–97
    Shao Y. 2001. A model for mineral dust emission. J Geophys Res, 106: 20239–20254CrossRef
    Shao Y, Wyroll K H, Chappell A, Huang J, Lin Z, Mc Tainsh G H, Mikami M, Tanaka T Y, Wang X, Yoon S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Res, 2: 181–204CrossRef
    Shao Y, Raupach M R, Findlater P A. 1993. Effect of saltation bombardment on the entrainment of dust by wind. J Geophys Res, 98: 12719–12726CrossRef
    Shi P, Yan P, Yuan Y, Nearing M A. 2004. Wind erosion research in China: Past, present and future. Prog Phys Geog, 28: 366–386CrossRef
    Sun J, Zhang, M, Liu T. 2001. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: relations to source area and climate. J Geophys Res, 106: 10325–10333CrossRef
    Sweeney M, Etyemezian V, Macpherson T, Nickling W, Gillies J, Nikolich G, Mc Donald E. 2008. Comparison of PI-SWERL with dust emission measurements from a straight-line field wind tunnel. J Geophys Res, 113: F01012, doi: 10.1029/2007JF000830
    Sweeney M R, Mc Donald E V, Etyemezian V. 2011. Quantifying dust emission from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135: 21–34CrossRef
    Sweeney M R, Mason J A. 2013. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. J Geophys Res, 118, doi: 10/1002/jgrf.20101
    Tegen I. 2003. Modeling the mineral dust aerosol cycle in the climate system. Quat Sci Rev, 22: 1821–1834CrossRef
    Uematsu M, Duce R A, Prospero J M, Chen L, Merrill J T, Mc Donald R L. 1983. Transport of mineral aerosol from Asia of the north Pacific Ocean. J Geophys Res, 88: 5343–5352CrossRef
    VanCuren R A, Cahill T A. 2002. Asian aerosols in North America: Frequency and concentration of fine dust. J Geophys Res, 107, doi: 10.1029/2002JD002204
    Wang X, Dong Z, Yan P, Yang Z, Hu Z. 2005. Surface sample collection and dust source analysis in northwestern China. Catena, 59: 35–53CrossRef
    Wang X, Zhou Z, Dong Z. 2006. Control of dust emissions by geomorphic conditions, wind environments and land use in northern China: An examination based on dust storm frequency from 1960 to 2003. Geomorphology, 81: 292–308CrossRef
    Wang X, Zhang C, Zhang J, Hua T, Lang L, Zhang X, Wang L. 2010. Nebkha formation: Implications for reconstructing environmental changes of the past several centuries in the Ala Shan Plateau, China. Paleogeogr Paleoclimatol Paleoecol, 297: 697–706CrossRef
    Whalley W B, Marshall J R, Smith B J. 1982. Origin of desert loess from some experimental observations. Nature, 300: 433–435CrossRef
    Wright J, Smith B, Whalley B. 1998. Mechanisms of loess-sized quartz silt production and their relative effectiveness: Laboratory simulations. Geomorphology, 23: 15–34CrossRef
    Xu Z, Mason J, Lu H. 2014. Vegetated dune morphodynamics during recent stabilization of the Mu Us dune field, north-central China. Geomorphology, 228: 486–503CrossRef
    Xuan J, Sokolik I N. 2002. Characterization of sources and emission rates of mineral dust in northern China. Atmos Environ, 36: 4863–4876CrossRef
    Yan P, Dong Z, Dong G, Zhang X, Zhang Y. 2001. Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau. J Arid Environ, 47: 443–452CrossRef
    Yang X, Rost K T, Lehmkuhl F, Zhenda Z, Dodson J. 2004. The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quatern Int, 118–119: 69–85CrossRef
    Yang Y, Qu Z, Shi P, Liu L, Zhang G, Tang Y, Hu X, Lv Y, Xiong Y, Wang J, Shen L, Lv L, Sun S. 2014. Wind regime and sand transport in the corridor between Badain Jaran and Tengger deserts, central Alxa Plateau, China. Aeolian Res, 12: 143–156CrossRef
    Zhang B, Tsunekawa A, Tsubo M. 2008. Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006. Global Planet Change, 60: 487–504CrossRef
    Zhao W, Sun Y, Balsam W, Lu H, Liu L, Chen J, Ji J. 2014. Hf-Nd isotopic variability in mineral dust from Chinese and Mongolian deserts: Implications for sources and dispersal. Scientific Reports, 4: 5837
  • 作者单位:Mark R. Sweeney (1)
    HuaYu Lu (2)
    MengChun Cui (2)
    Joseph A. Mason (3)
    Han Feng (2)
    ZhiWei Xu (2)

    1. Department of Earth Sciences, University of South Dakota, Vermillion, South Dakota, USA
    2. Laboratory of Earth Surface Process and Environment, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093, China
    3. Department of Geography, University of Wisconsin-Madison, Madison, Wisconsin, USA
  • 刊物主题:Earth Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1897
文摘
While saltation bombardment of sand grains on a fine substrate can produce considerable dust, the well-sorted nature of sand dunes tends to preclude them from consideration as major dust sources. Recent research, however, has revealed that sand dunes can, in some cases, be large sources of dust. We used the PI-SWERL (Portable In-Situ Wind Erosion Laboratory) to measure in the field the potential of sand dunes and other desert landforms to emit particulate matter <10 μm (PM-10) dust in the Tengger, Ulan Buh, and Mu Us deserts of northern China. Combined with high resolution particle size measurements of the dune sand, an assessment of sand dunes as a dust source can be made. Large active transverse dunes tend to contain little to no stored PM-10, yet they produce a low dust flux. Coppice dunes stabilized by vegetation contain appreciable PM-10 and have very high dust emission potential. There is a positive correlation between the amount of PM-10 stored in a dune and its potential dust flux. Saltation liberates loose fines stored in dunes, making them very efficient dust emitters compared to landforms such as dry lake beds and washes where dust particles are unavailable for aeolian transport due to protective crusts or sediment cohesion. In cases where large dunes do not store PM-10 yet emit dust when active, two hypotheses can be considered: (1) iron-oxide grain coatings are removed during saltation, creating dust, and (2) sand grains collide during saltation, abrading grains to create dust. Observations reveal that iron oxide coatings are present on some dune sands. PI-SWERL data suggests that low dust fluxes from dunes containing no stored dust may represent an estimate for the amount of PM-10 dust produced by removal of iron oxide coatings. These results are similar to results from dunes in the United States. In addition, PI-SWERL results suggest that dust-bearing coppice dunes, which cover vast areas of China’s sandy deserts, may become major sources of dust in the future if overgrazing, depletion of groundwater, or drought destabilizes the vegetation that now partially covers these dunes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700