The transverse shear deformation behaviour of magneto-electro-elastic shell
详细信息    查看全文
  • 作者:Thar M. Badri Albarody ; Hussain H. Al-Kayiem…
  • 关键词:Structronic shell ; Thermo ; magneto ; electro ; elastic ; Laminated shell ; Smart composite ; Linear analysis ; Exact solution
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:30
  • 期:1
  • 页码:77-87
  • 全文大小:9,011 KB
  • 参考文献:[1]J. M. S. Moita, C. M. M. Soares and C. A. M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Composite Structures, 91 (2009) 421–426.CrossRef
    [2]J. N. Reddy, Mechanics of laminated composite plates and shells, New York: CRC Press (2004).MATH
    [3]R. G. Lage, C. M. M. Soares, C. A. M. Soares and J. N. Reddy, Layerwise partial mixed finite element analysis of magneto-electro-elastic plates, Comput Structure, 82 (2004) 1293–301.CrossRef
    [4]R. K. Bhangale and N. Ganesan, Free vibration of simply supported functionally graded and layered magneto-electroelastic plates by finite element method, Journal of Sound and Vibration, 294 (2006) 1016–1038.CrossRef
    [5]T. M. Badri and H. H. Al-Kayiem, Dynamic analysis of laminated composite thermo-magneto-electro-elastic shells, Journal of Mechanical Science and Technology, 9 (28) (2014).
    [6]P. Heyliger and S. Brooks, Exact solutions for laminated piezoelectric plates in cylindrical bending, ASME Jornal of Applied Mechanics, 63 (1996) 903–910.CrossRef MATH
    [7]D. A. Savravanos, P. R. Heyliger and D. Hopkins, A layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates, International Journal of Solid Structures, 34 (3) (1997) 359–378.CrossRef MATH
    [8]P. R. Heyliger and E. Pan, Static fields in magnetoelectroelastic laminates, AIAA Journal, 42 (2004) 1435–1443.CrossRef
    [9]P. R. Heyliger, F. Ramirez and E. Pan, Two dimensional static fields in magnetoelectroelastic laminates, Journal of Intelligent Material Systems and Structures, 15 (2004) 689–709.CrossRef
    [10]E. Pan and F. Han, Exact solution for functionally graded and layered magneto-electro-elastic plates, International Journal of Engineering Science, 43 (2005) 321–339.CrossRef
    [11]J. Wang, L. Chen and S. Fang, State vector approach to analysis of multilayered magneto-electro-elastic plates, International Journal of Solids and Structures, 40 (2003) 1669–1680.CrossRef MATH
    [12]W. Chih-Ping and Y.-H. Tsai, Static behaviour of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux, International Journal of Engineering Science, 45 (2007) 744–769.CrossRef
    [13]Y.-H. Tsai, W. Chih-Ping and S. Yun-Siang, Threedimensional analysis of doubly curved functionally graded magneto-electro-elastic shells, European Journal of Mechanics A/Solids, 27 (2008) 79–105.MathSciNet CrossRef MATH
    [14]A. Gülay and C. M. Dokmeci, On the fundamental equations of electromagnetoelasticity media in variational form with an application to shell/lamina equations, International Journal of Solids and Structures, 47 (2010) 466–492.CrossRef MATH
    [15]T. M. Badri, H. H. Al-Kayiem and M. B. Taufiq, The theory of functional and adaptive shell structures, ISBN: 978-3-8465-2175-5, LAP LAMBERT Academic Pub. (2013).
    [16]J. N. Reddy, Energy and variational methods in applied mechanics, New York: John Wiley & Sons, Ltd. (1984).MATH
    [17]B. Yimin, Static and dynamic analysis of piezothermoelastic laminated shell composites with distributed sensors and actuators, Mechanical Engineering, University of Kentucky: Lexington, Kentucky (1996).
    [18]H. S. Tzou, H.-J. Lee and S. M. Arnold, Smart materials, precision sensors/ actuators, smart structures, and structronic systems, Mechanics of Advanced Materials and Structures, 11 (2004) 367–393.
    [19]T. M. B. Albarody and H. H. Al-Kayiem, Laminated smart shell structures; theory and analysis, in Shell Structures: Theory and Application, W. Pietraszkiewicz, Editor, CRC Press, Taylor & Francis: London (2013) 49.CrossRef
    [20]L. D. Perez-Fernandez et al., On the constitutive relations and energy potentials of linear thermo-magneto-electroelasticity, Mechanics Research Communications, 36 (2009) 343–350.MathSciNet CrossRef MATH
    [21]F. Yang et al., The effective properties of smart composites with linear coupling Behaviours, International Journal of Mechanics and Materials in Design, 4 (3) (2008) 255–263.CrossRef
    [22]A. W. Leissa and J. Chang, Elastic deformation of thick, laminated composite shallow shells, Compos. Struct., 35 (1996) 53–170.
    [23]M. S. Qatu, Vibration of laminated shells and plates, London: Elsevier (2004).MATH
    [24]J. Yang, An introduction to the theory of piezoelectricity, Advances in Mechanics and Mathematics, Lincoln, Nebraska: Springer (2005).
  • 作者单位:Thar M. Badri Albarody (1)
    Hussain H. Al-Kayiem (1)
    Waleed Faris (2)

    1. Mechanical Engineering Department, UniversitiTeknologi PETRONAS, Perak, 32610, Malaysia
    2. Mechanical Engineering Department, College of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
Compared to the large number of possible magneto-electro-elastic shell theories, very few exact solutions determining the in-plane stresses, electric displacements and magnetic inductions are possible. While, solving the magneto-electro-elastic shell equations in terms of thermo-magneto-electro-elastic generalized field functions on arbitrary domains and for general conditions exactly are not always possible. In the present work, a linear version of magneto-electro-elastic shell with simply supported boundary conditions, solved exactly, provided that the lamination scheme is cross-ply or anti-symmetric angle-ply laminates. The exact solution that introduced herein can measure the in-plane stresses, electric displacements and magnetic inductions. It also allow for an accurate and usually elegant and conclusive investigation of the various sensations in a shell structure. However, it is important for micro-electro-mechanical shell applications to have an approach available that gives the transverse shear deformation Behaviourfor cases that cannot examine experimentally. An investigated examples were accompanied and noteworthy conclusions were drawn which highlight the issues of the implementation of the exact solution, implication of the effects of the material properties, lay-ups of the constituent layers, and shell parameters on the static Behaviour.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700