Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome
详细信息    查看全文
  • 作者:Sarah Brasa ; Arne Mueller ; Sébastien Jacquemont ; Florian Hahne…
  • 关键词:Fragile X syndrome (FXS) ; Chromatin profiling ; Epigenetic silencing ; FMR1 ; 5 ; hydroxymethylation (5hmC) ; Clinical biomarker
  • 刊名:Clinical Epigenetics
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:8
  • 期:1
  • 全文大小:4,052 KB
  • 参考文献:1.Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol. 2012;7:219–45. doi:10.​1146/​annurev-pathol-011811-132457 .CrossRef PubMed
    2.Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, et al. Advances in the treatment of fragile X syndrome. Pediatrics. 2009;123(1):378–90. doi:10.​1542/​peds.​2008-0317 .PubMedCentral CrossRef PubMed
    3.Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY, Gerhardt J, et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science. 2014;343(6174):1002–5. doi:10.​1126/​science.​1245831 .PubMedCentral CrossRef PubMed
    4.Fu YH, Kuhl DP, Pizzuti A, Pieretti M, Sutcliffe JS, Richards S, et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991;67(6):1047–58.CrossRef PubMed
    5.Kenneson A, Zhang F, Hagedorn CH, Warren ST. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet. 2001;10(14):1449–54.CrossRef PubMed
    6.Tassone F, Hagerman PJ. Expression of the FMR1 gene. Cytogenet Genome Res. 2003;100(1-4):124–8. doi:72846.CrossRef PubMed
    7.Willemsen R, Levenga J, Oostra BA. CGG repeat in the FMR1 gene: size matters. Clin Genet. 2011;80(3):214–25. doi:10.​1111/​j.​1399-0004.​2011.​01723.​x .PubMedCentral CrossRef PubMed
    8.Jacquemont S, Curie A, des Portes V, Torrioli MG, Berry-Kravis E, Hagerman RJ, et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med. 2011;3(64):64ra1. doi:10.​1126/​scitranslmed.​3001708 .CrossRef PubMed
    9.Hansen RS, Gartler SM, Scott CR, Chen SH, Laird CD. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene. Hum Mol Genet. 1992;1(8):571–8.CrossRef PubMed
    10.Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1(6):397–400.CrossRef PubMed
    11.Bell MV, Hirst MC, Nakahori Y, MacKinnon RN, Roche A, Flint TJ, et al. Physical mapping across the fragile X: hypermethylation and clinical expression of the fragile X syndrome. Cell. 1991;64(4):861–6.CrossRef PubMed
    12.Pietrobono R, Tabolacci E, Zalfa F, Zito I, Terracciano A, Moscato U, et al. Molecular dissection of the events leading to inactivation of the FMR1 gene. Hum Mol Genet. 2005;14(2):267–77. doi:10.​1093/​hmg/​ddi024 .CrossRef PubMed
    13.Coffee B, Zhang F, Ceman S, Warren ST, Reines D. Histone modifications depict an aberrantly heterochromatinized FMR1 gene in fragile X syndrome. Am J Hum Genet. 2002;71(4):923–32. doi:10.​1086/​342931 .PubMedCentral CrossRef PubMed
    14.Tabolacci E, Neri G. Epigenetic modifications of the FMR1 gene. Methods Mol Biol. 2013;1010:141–53. doi:10.​1007/​978-1-62703-411-1_​10 .CrossRef PubMed
    15.Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet. 2010;19(23):4634–42. doi:10.​1093/​hmg/​ddq394 .PubMedCentral CrossRef PubMed
    16.Merenstein SA, Shyu V, Sobesky WE, Staley L, Berry-Kravis E, Nelson DL, et al. Fragile X syndrome in a normal IQ male with learning and emotional problems. J Am Acad Child Adolesc Psychiatry. 1994;33(9):1316–21. doi:10.​1097/​00004583-199411000-00014 .CrossRef PubMed
    17.Hagerman RJ, Hull CE, Safanda JF, Carpenter I, Staley LW, O'Connor RA, et al. High functioning fragile X males: demonstration of an unmethylated fully expanded FMR-1 mutation associated with protein expression. Am J Med Genet. 1994;51(4):298–308. doi:10.​1002/​ajmg.​1320510404 .CrossRef PubMed
    18.Loesch D, Hagerman R. Unstable mutations in the FMR1 gene and the phenotypes. Adv Exp Med Biol. 2012;769:78–114.PubMedCentral CrossRef PubMed
    19.Taylor AK, Safanda JF, Fall MZ, Quince C, Lang KA, Hull CE, et al. Molecular predictors of cognitive involvement in female carriers of fragile X syndrome. JAMA. 1994;271(7):507–14.CrossRef PubMed
    20.Pretto D, Yrigollen CM, Tang HT, Williamson J, Espinal G, Iwahashi CK, et al. Clinical and molecular implications of mosaicism in FMR1 full mutations. Front Genet. 2014;5:318. doi:10.​3389/​fgene.​2014.​00318 .PubMedCentral CrossRef PubMed
    21.Godler DE, Tassone F, Loesch DZ, Taylor AK, Gehling F, Hagerman RJ, et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio. Hum Mol Genet. 2010;19(8):1618–32. doi:10.​1093/​hmg/​ddq037 .PubMedCentral CrossRef PubMed
    22.Godler DE, Inaba Y, Shi EZ, Skinner C, Bui QM, Francis D, et al. Relationships between age and epi-genotype of the FMR1 exon 1/intron 1 boundary are consistent with non-random X-chromosome inactivation in FM individuals, with the selection for the unmethylated state being most significant between birth and puberty. Hum Mol Genet. 2013;22(8):1516–24. doi:10.​1093/​hmg/​ddt002 .PubMedCentral CrossRef PubMed
    23.Tabolacci E, Moscato U, Zalfa F, Bagni C, Chiurazzi P, Neri G. Epigenetic analysis reveals a euchromatic configuration in the FMR1 unmethylated full mutations. European journal of human genetics : EJHG. 2008;16(12):1487–98. doi:10.​1038/​ejhg.​2008.​130 .CrossRef PubMed
    24.Tabolacci E, Pietrobono R, Moscato U, Oostra BA, Chiurazzi P, Neri G. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. European journal of human genetics : EJHG. 2005;13(5):641–8. doi:10.​1038/​sj.​ejhg.​5201393 .CrossRef PubMed
    25.Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30. doi:10.​1126/​science.​1169786 .PubMedCentral CrossRef PubMed
    26.Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5. doi:10.​1126/​science.​1170116 .PubMedCentral CrossRef PubMed
    27.Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2012;13(1):7–13. doi:10.​1038/​nrg3080 .
    28.Szulwach KE, Li X, Li Y, Song CX, Wu H, Dai Q, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci. 2011;14(12):1607–16. doi:10.​1038/​nn.​2959 .PubMedCentral CrossRef PubMed
    29.Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 2011;39(12):5015–24. doi:10.​1093/​nar/​gkr120 .PubMedCentral CrossRef PubMed
    30.Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29(1):68–72. doi:10.​1038/​nbt.​1732 .PubMedCentral CrossRef PubMed
    31.Thomson JP, Lempiainen H, Hackett JA, Nestor CE, Muller A, Bolognani F, et al. Non-genotoxic carcinogen exposure induces defined changes in the 5-hydroxymethylome. Genome Biol. 2012;13(10):R93. doi:10.​1186/​gb-2012-13-10-r93 .PubMedCentral CrossRef PubMed
    32.Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151(7):1417–30. doi:10.​1016/​j.​cell.​2012.​11.​022 .PubMedCentral CrossRef PubMed
    33.Khare T, Pai S, Koncevicius K, Pal M, Kriukiene E, Liutkeviciute Z, et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat Struct Mol Biol. 2012;19(10):1037–43. doi:10.​1038/​nsmb.​2372 .PubMedCentral CrossRef PubMed
    34.Cheng Y, Bernstein A, Chen D, Jin P. 5-Hydroxymethylcytosine: a new player in brain disorders? Exp. Neurol.. 2014. doi:10.​1016/​j.​expneurol.​2014.​05.​008 .
    35.Al-Mahdawi S, Virmouni SA, Pook MA. The emerging role of 5-hydroxymethylcytosine in neurodegenerative diseases. Front Neurosci. 2014;8:397. doi:10.​3389/​fnins.​2014.​00397 .PubMedCentral CrossRef PubMed
    36.Szulwach KE, Li X, Li Y, Song CX, Han JW, Kim S, et al. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet. 2011;7(6):e1002154. doi:10.​1371/​journal.​pgen.​1002154 .PubMedCentral CrossRef PubMed
    37.Kinde B, Gabel HW, Gilbert CS, Griffith EC, Greenberg ME. Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc Natl Acad Sci U S A. 2015. doi:10.​1073/​pnas.​1411269112 .
    38.Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466(7303):253–7.PubMedCentral CrossRef PubMed
    39.Aman MG, Burrow WH, Wolford PL. The Aberrant Behavior Checklist-Community: factor validity and effect of subject variables for adults in group homes. American journal of mental retardation: AJMR. 1995;100(3):283–92.PubMed
    40.Xie W, Dolzhanskaya N, LaFauci G, Dobkin C, Denman RB. Tissue and developmental regulation of fragile X mental retardation 1 exon 12 and 15 isoforms. Neurobiol Dis. 2009;35(1):52–62. doi:10.​1016/​j.​nbd.​2009.​03.​015 .CrossRef PubMed
    41.Verkerk AJ, de Graaff E, De Boulle K, Eichler EE, Konecki DS, Reyniers E, et al. Alternative splicing in the fragile X gene FMR1. Hum Mol Genet. 1993;2(4):399–404.CrossRef PubMed
    42.Dolzhanskaya N, Bolton DC, Denman RB. Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation. Biochemistry. 2008;47(33):8491–503. doi:10.​1021/​bi702298f .CrossRef PubMed
    43.Ndlovu MN, Denis H, Fuks F. Exposing the DNA methylome iceberg. Trends Biochem Sci. 2011;36(7):381–7. doi:10.​1016/​j.​tibs.​2011.​03.​002 .PubMed
    44.Naumann A, Hochstein N, Weber S, Fanning E, Doerfler W. A distinct DNA-methylation boundary in the 5'- upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am J Hum Genet. 2009;85(5):606–16. doi:10.​1016/​j.​ajhg.​2009.​09.​018 .PubMedCentral CrossRef PubMed
    45.Guy J, Cheval H, Selfridge J, Bird A. The role of MeCP2 in the brain. Annu Rev Cell Dev Biol. 2011;27:631–52. doi:10.​1146/​annurev-cellbio-092910-154121 .CrossRef PubMed
    46.Wang T, Pan Q, Lin L, Szulwach KE, Song CX, He C, et al. Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum. Hum Mol Genet. 2012;21(26):5500–10. doi:10.​1093/​hmg/​dds394 .PubMedCentral CrossRef PubMed
    47.Guo Y, Nady N, Qi C, Allali-Hassani A, Zhu H, Pan P, et al. Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res. 2009;37(7):2204–10. doi:10.​1093/​nar/​gkp086 .PubMedCentral CrossRef PubMed
    48.Kalakonda N, Fischle W, Boccuni P, Gurvich N, Hoya-Arias R, Zhao X, et al. Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene. 2008;27(31):4293–304. doi:10.​1038/​onc.​2008.​67 .PubMedCentral CrossRef PubMed
    49.Umlauf D, Goto Y, Feil R. Site-specific analysis of histone methylation and acetylation. Methods Mol Biol. 2004;287:99–120.PubMed
    50.O'Geen H, Nicolet CM, Blahnik K, Green R, Farnham PJ. Comparison of sample preparation methods for ChIP-chip assays. Biotechniques. 2006;41(5):577–80.PubMedCentral CrossRef PubMed
  • 作者单位:Sarah Brasa (1)
    Arne Mueller (1)
    Sébastien Jacquemont (2)
    Florian Hahne (1)
    Izabela Rozenberg (3)
    Thomas Peters (4)
    Yunsheng He (4)
    Christine McCormack (5)
    Fabrizio Gasparini (6)
    Salah-Dine Chibout (1)
    Olivier Grenet (1)
    Jonathan Moggs (1)
    Baltazar Gomez-Mancilla (3)
    Rémi Terranova (1)

    1. Preclinical Safety, Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057, Basel, Switzerland
    2. Service de Génétique Médicale, Centre Hospitalier Universitaire Vaudois, CH-1011, Lausanne, Switzerland
    3. Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056, Basel, Switzerland
    4. BioMarker Development, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
    5. Clinical Diagnostics, Novartis Institutes for Biomedical Research, Novartis Pharma AG, Cambridge, MA, USA
    6. Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4057, Basel, Switzerland
  • 刊物主题:Human Genetics; Gene Function;
  • 出版者:BioMed Central
  • ISSN:1868-7083
文摘
Background Fragile X syndrome (FXS) is the most common form of inherited intellectual disability, resulting from the loss of function of the fragile X mental retardation 1 (FMR1) gene. The molecular pathways associated with FMR1 epigenetic silencing are still elusive, and their characterization may enhance the discovery of novel therapeutic targets as well as the development of novel clinical biomarkers for disease status.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700