A “one size fits all” approach to language fMRI: increasing specificity and applicability by adding a self-paced component
详细信息    查看全文
  • 作者:Adrienn Máté ; Karen Lidzba ; Till-Karsten Hauser…
  • 关键词:Functional MRI ; Language ; Event ; related analysis ; Self ; paced paradigm ; Specificity ; Task design
  • 刊名:Experimental Brain Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:234
  • 期:3
  • 页码:673-684
  • 全文大小:689 KB
  • 参考文献:Abou-Khalil B, Schlaggar BL (2002) Is it time to replace the Wada test? Neurology 59(2):160–161CrossRef PubMed
    Andersson JL, Hutton C, Ashburner J, Turner R, Friston K (2001) Modeling geometric deformations in EPI time series. Neuroimage 13(5):903–919CrossRef PubMed
    Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113CrossRef PubMed
    Basho S, Palmer ED, Rubio MA, Wulfeck B, Müller RA (2007) Effects of generation mode in fMRI adaptations of semantic fluency: paced production and overt speech. Neuropsychologia 45(8):1697–1706PubMedCentral CrossRef PubMed
    Baxendale S, Thompson P, Duncan J, Richardson M (2003) Is it time to replace the Wada test? Neurology 60(2):354–355CrossRef PubMed
    Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR et al (1999) Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 52(4):798–809CrossRef PubMed
    Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M et al (1996) Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46(4):978–984CrossRef PubMed
    Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM, Prieto T (1997) Human brain language areas identified by functional magnetic resonance imaging. J Neurosci 17(1):353–362PubMed
    Binder JR, Frost JA, Hammeke TA, Bellgowan PS, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state. A functional MRI study. J Cogn Neurosci 11(1):80–95CrossRef PubMed
    Bookheimer S (2002) Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu Rev Neurosci 25:151–188CrossRef PubMed
    Bulheller S, Ibrahimovic N, Häcker H (2003) Entwicklung und Evaluation der deutschsprachigen Fassung des Peabody Picture Vocabulary Test (PPVT). Ein Testverfahren zur Erfassung sprachlichen Intelligenz. Swets Test Services, Frankfurt/Main
    Burton MW (2001) The role of inferior frontal cortex in phonological processing. Cogn Sci 25(5):695–709CrossRef
    Butterworth B (1992) Disorders of phonological encoding. Cognition 42(1–3):261–286CrossRef PubMed
    Church JA, Petersen SE, Schlaggar BL (2010) The “Task B problem” and other considerations in developmental functional neuroimaging. Hum Brain Mapp 31:852–862PubMedCentral CrossRef PubMed
    Clements AM, Rimrodt SL, Abel JR, Blankner JG, Mostofsky SH, Pekar JJ et al (2006) Sex differences in cerebral laterality of language and visuospatial processing. Brain Lang 98(2):150–158CrossRef PubMed
    D’Esposito M, Zarahn E, Aguirre GK, Shin RK, Auerbach P, Detre JA (1997) The effect of pacing of experimental stimuli on observed functional MRI activity. Neuroimage 6(2):113–121CrossRef PubMed
    Daselaar SM, Veltman DJ, Rombouts SA, Raaijmakers JG, Jonker C (2003) Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain 126(Pt 1):43–56CrossRef PubMed
    Daselaar SM, Prince SE, Cabeza R (2004) When less means more: deactivations during encoding that predict subsequent memory. Neuroimage 23(3):921–927CrossRef PubMed
    De Smet HJ, Paquier P, Verhoeven J, Mariën P (2013) The cerebellum: its role in language and related cognitive and affective functions. Brain Lang 127(3):334–342CrossRef PubMed
    Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JDE (1995) Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci 15(9):5870–5878PubMed
    Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10CrossRef PubMed
    Ebner K, Lidzba K, Hauser TK, Wilke M (2011) Assessing language and visuospatial functions with one task: a “dual use” approach to performing fMRI in children. Neuroimage 58(3):923–929CrossRef PubMed
    Everts R, Lidzba K, Wilke M, Kiefer C, Mordasini M, Schroth G et al (2009) Strengthening of laterality of verbal and visuospatial functions during childhood and adolescence. Hum Brain Mapp 30(2):473–483CrossRef PubMed
    Fernández G, de Greiff A, von Oertzen J, Reuber M, Lun S, Klaver P et al (2001) Language mapping in less than 15 minutes: real-time functional MRI during routine clinical investigation. Neuroimage 14(3):585–594CrossRef PubMed
    Fernández G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J et al (2003) Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 60(6):969–975CrossRef PubMed
    Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84CrossRef PubMed
    Friston K (2013) Sample size and the fallacies of classical inference. Neuroimage 1(81):503–504CrossRef
    Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC (1994) Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1:210–220CrossRef PubMed
    Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RS (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210CrossRef
    Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R (1996) Movement-related effects in fMRI time-series. Magn Reson Med 35(3):346–355CrossRef PubMed
    Gaillard WD, Sachs BC, Whitnah JR, Ahmad Z, Balsamo LM, Petrella JR et al (2003) Developmental aspects of language processing: fMRI of verbal fluency in children and adults. Hum Brain Mapp 18(3):176–185CrossRef PubMed
    Gaser C, Altaye M, Wilke M, Holland SK (2007) Unified segmentation without tissue priors. Neuroimage 36(Suppl. 1):S68
    Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRef PubMed
    Grodd W, Hülsmann E, Ackermann H (2005) Functional MRI localizing in the cerebellum. Neurosurg Clin N Am 16(1):77–99CrossRef PubMed
    Hagoort P (2005) On Broca, brain, and binding: a new framework. Trends Cogn Sci 9(9):416–423CrossRef PubMed
    Hinojosa JA, Martín-Loeches M, Gómez-Jarabo G, Rubia FJ (2000) Common basal extrastriate areas for the semantic processing of words and pictures. Clin Neurophysiol 111(3):552–560CrossRef PubMed
    Hodel AS, Markant JC, Van Den Heuvel SE, Cirilli-Raether JM, Thomas KM (2014) Developmental differences in effects of task pacing on implicit sequence learning. Front Psychol 25(5):153. doi:10.​3389/​fpsyg.​2014.​00153
    Jansen A, Flöel A, Van Randenborgh J, Konrad C, Rotte M, Förster AF et al (2005) Crossed cerebro–cerebellar language dominance. Hum Brain Mapp 24(3):165–172CrossRef PubMed
    Karnath HO, Rüter J, Mandler A, Himmelbach M (2009) The anatomy of object recognition—visual form agnosia caused by medial occipitotemporal stroke. J Neurosci 29(18):5854–5862CrossRef PubMed
    Khorrami MS, Faro SH, Seshadri A, Moonat S, Lidicker J, Hershey BL et al (2011) Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks. J Neuroimaging 21(3):236–240CrossRef PubMed
    Kotsoni E, Byrd D, Casey BJ (2006) Special considerations for functional magnetic resonance imaging of pediatric populations. J Magn Reson Imaging 23(6):877–886PubMedCentral CrossRef PubMed
    Krinzinger H, Koten JW, Hennemann J, Schueppen A, Sahr K, Arndt D et al (2011) Sensitivity, reproducibility, and reliability of self-paced versus fixed stimulus presentation in an fMRI study on exact, non-symbolic arithmetic in typically developing children aged between 6 and 12 years. Dev Neuropsychol 36(6):721–740CrossRef PubMed
    Lehericy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R et al (2000) Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 54:1625–1633CrossRef PubMed
    Leiner HC, Leiner AL, Dow RS (1989) Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci 103(5):998–1008CrossRef PubMed
    Levelt WJ (1992) Accessing words in speech production: stages, processes and representations. Cognition 42(1–3):1–22CrossRef PubMed
    Lidzba K, Wilke M, Staudt M, Krägeloh-Mann I, Grodd W (2008) Reorganization of the cerebro–cerebellar network of language production in patients with congenital left-hemispheric brain lesions. Brain Lang 106(3):204–210CrossRef PubMed
    Lidzba K, Schwilling E, Grodd W, Krägeloh-Mann I, Wilke M (2011) Language comprehension vs. language production: age effects on fMRI activation. Brain Lang 119(1):6–15CrossRef PubMed
    Maccotta L, Zacks JM, Buckner RL (2001) Rapid self-paced event-related functional MRI: feasibility and implications of stimulus-versus response-locked timing. Neuroimage 14(5):1105–1121CrossRef PubMed
    Macey PM, Macey KE, Kumar R, Harper RM (2004) A method for removal of global effects from fMRI time series. Neuroimage 22(1):360–366CrossRef PubMed
    Mannhaupt G, Jansen H (1989) Phonologische Bewußtheit: Aufgabenentwicklung und Leistungen im Vorschulalter. Heilpädagogische Forschung 15:50–56
    Mechelli A, Henson RN, Price CJ, Friston KJ (2003a) Comparing event-related and epoch analysis in blocked design fMRI. Neuroimage 18(3):806–810CrossRef PubMed
    Mechelli A, Price CJ, Henson RN, Friston KJ (2003b) Estimating efficiency a priori: a comparison of blocked and randomized designs. Neuroimage 18(3):798–805CrossRef PubMed
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRef PubMed
    Petersen SE, Dubis JW (2012) The mixed block/event-related design. Neuroimage 62(2):1177–1184PubMedCentral CrossRef PubMed
    Pillai JJ, Allison JD, Sethuraman S, Araque JM, Thiruvaiyaru D, Ison CB et al (2004) Functional MR imaging study of language-related differences in bilingual cerebellar activation. AJNR Am J Neuroradiol 25(4):523–532PubMed
    Poldrack RA, Paré-Blagoev EJ, Grant PE (2002) Pediatric functional magnetic resonance imaging: progress and challenges. Top Magn Reson Imaging 13(1):61–70CrossRef PubMed
    Price C (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197:335–359PubMedCentral CrossRef PubMed
    Price CJ, Veltman DJ, Ashburner J, Josephs O, Friston KJ (1999) The critical relationship between the timing of stimulus presentation and data acquisition in blocked designs with fMRI. Neuroimage 10(1):36–44CrossRef PubMed
    Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W (2000) Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport 11:1997–2000CrossRef PubMed
    Ruff IM, Petrovich Brennan NM, Peck KK, Hou BL, Tabar V, Brennan CW et al (2008) Assessment of the language laterality index in patients with brain tumor using functional MR imaging: effects of thresholding, task selection, and prior surgery. AJNR Am J Neuroradiol 29(3):528–535CrossRef PubMed
    Seurinck R, Vingerhoets G, Vandemaele P, Deblaere K, Achten E (2005) Trial pacing in mental rotation tasks. Neuroimage 25(4):1187–1196CrossRef PubMed
    Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59(2):238–244CrossRef PubMed
    Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW (2006) fMRI study of language lateralization in children and adults. Hum Brain Mapp 27(3):202–212PubMedCentral CrossRef PubMed
    Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline JB (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35(1):105–120CrossRef PubMed
    Tieleman A, Seurinck R, Deblaere K, Vandemaele P, Vingerhoets G, Achten E (2005) Stimulus pacing affects the activation of the medial temporal lobe during a semantic classification task: an fMRI study. Neuroimage 26(2):565–572CrossRef PubMed
    van Ermingen-Marbach M, Grande M, Pape-Neumann J, Sass K, Heim S (2013) Distinct neural signatures of cognitive subtypes of dyslexia with and without phonological deficits. Neuroimage Clin 2:477–490PubMedCentral CrossRef PubMed
    Wilke M (2012) An alternative approach towards assessing and accounting for individual motion in fMRI timeseries. Neuroimage 59(3):2062–2072CrossRef PubMed
    Wilke M, Holland SK (2008) Structural MR imaging studies of the brain in children: issues and opportunities. Neuroembryol Aging 5:6–13CrossRef
    Wilke M, Lidzba K (2007) LI-tool: a new toolbox to assess lateralization in functional MR-data. J Neurosci Methods 163(1):128–136CrossRef PubMed
    Wilke M, Schmithorst VJ (2006) A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage 33(2):522–530CrossRef PubMed
    Wilke M, Schmithorst VJ, Holland SK (2002) Assessment of spatial normalization of whole
    ain magnetic resonance images in children. Hum Brain Mapp 17:48–60CrossRef PubMed
    Wilke M, Lidzba K, Staudt M, Buchenau K, Grodd W, Krägeloh-Mann I (2005) Comprehensive language mapping in children, using functional magnetic resonance imaging: what’s missing counts. NeuroReport 16(9):915–919CrossRef PubMed
    Wilke M, Lidzba K, Staudt M, Buchenau K, Grodd W, Krägeloh-Mann I (2006) An fMRI task battery for assessing hemispheric language dominance in children. Neuroimage 32(1):400–410CrossRef PubMed
    Wilke M, Pieper T, Lindner K, Dushe T, Holthausen H, Krägeloh-Mann I (2010) Why one task is not enough: functional MRI for atypical language organization in two children. Eur J Paediatr Neurol 14(6):474–478CrossRef PubMed
    Wilke M, Pieper T, Lindner K, Dushe T, Staudt M, Grodd W et al (2011) Clinical functional MRI of the language domain in children with epilepsy. Hum Brain Mapp 32(11):1882–1893CrossRef PubMed
    World Medical Association (2013) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194. doi:10.​1001/​jama.​2013.​281053 CrossRef
    Yerys BE, Jankowski KF, Shook D, Rosenberger LR, Barnes KA, Berl MM et al (2009) The fMRI success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum Brain Mapp 30(10):3426–3435PubMedCentral CrossRef PubMed
    Yuan W, Altaye M, Ret J, Schmithorst V, Byars AW, Plante E et al (2009) Quantification of head motion in children during various fMRI language tasks. Hum Brain Mapp 30(5):1481–1489PubMedCentral CrossRef PubMed
    Zsoter A, Staudt M, Wilke M (2012) Identification of successful clinical fMRI sessions in children: an objective approach. Neuropediatrics 43(5):249–257CrossRef PubMed
  • 作者单位:Adrienn Máté (1) (2) (3)
    Karen Lidzba (2) (3)
    Till-Karsten Hauser (4)
    Martin Staudt (2) (5)
    Marko Wilke (2) (3)

    1. Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
    2. Department of Pediatric Neurology and Developmental Medicine, Children’s Hospital, Hoppe-Seyler-Str. 1, 72076, Tübingen, Germany
    3. Experimental Pediatric Neuroimaging Group, Pediatric Neurology and Department of Neuroradiology, University Hospital, Tübingen, Germany
    4. Department of Neuroradiology, University Hospital, Tübingen, Germany
    5. Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik, Vogtareuth, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
We have previously established an fMRI task battery suitable for mapping the language processing network in children. Among the tasks used, the synonyms and the vowel identification task induced robust task-related activations in children with average language abilities; however, the fixed presentation time seems to be a drawback in participants with above- or below-average language abilities. This feasibility study in healthy adults (n = 20) was aimed at adapting these tasks to the individual level of each patient by implementing a self-paced stimulus presentation. The impact of using a block- versus an event-related statistical approach was also evaluated. The self-paced modification allowed our participants with above-average language abilities to process stimuli much faster than originally implemented, likely increasing task adherence. A higher specificity of the event-related analysis was confirmed by stronger left inferior frontal and crossed cerebellar activations. We suggest that self-paced paradigms and event-related analyses may both increase specificity and applicability. Keywords Functional MRI Language Event-related analysis Self-paced paradigm Specificity Task design

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700