Renormalization Method in p-Adic λ-Model on the Cayley Tree
详细信息    查看全文
  • 作者:Farrukh Mukhamedov
  • 关键词:p ; adic numbers ; p ; adic quasi Gibbs measure ; Phase transition ; Dynamical system ; Cayley tree
  • 刊名:International Journal of Theoretical Physics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:54
  • 期:10
  • 页码:3577-3595
  • 全文大小:335 KB
  • 参考文献:1.Albeverio, S., Karwowski, W.: A random walk on p-adics, the generator and its spectrum. Stochastic. Process. Appl. 53, 1-2 (1994)MathSciNet CrossRef MATH
    2.Albeverio, S., Zhao, X.: On the relation between different constructions of random walks on p-adics. Markov Process. Related Fields 6, 239-56 (2000)MathSciNet MATH
    3.Albeverio, S., Zhao, X.: Measure-valued branching processes associated with random walks on p-adics. Ann. Probab. 28, 1680-710 (2000)MathSciNet CrossRef MATH
    4.Albeverio, S., Khrennikov, A. Yu., Shelkovich, V.M.: Theory of p-adic Distributions. Linear and Nonlinear Models. Cambridge University Press, Cambridge (2010)CrossRef MATH
    5.Albeverio, S., Rozikov, U., Sattorov, I.A.: p-adic (2,1)-rational dynamical systems. J. Math. Anal. Appl. 398, 553-66 (2013)MathSciNet CrossRef MATH
    6.Anashin, V., Khrennikov A.: Applied Algebraic Dynamics. Berlin, New York (2009)
    7.Areféva, I. Ya., Dragovic, B., Volovich, I.V.: p-adic summability of the anharmonic ocillator. Phys. Lett. B 200, 512-14 (1988)MathSciNet CrossRef ADS
    8.Areféva, I. Ya., Dragovic, B., Frampton, P.H., Volovich, I.V.: The wave function of the Universe and p-adic gravity. Int. J. Modern Phys. A 6, 4341-358 (1991)
    9.Arrowsmith, D.K., Vivaldi, F.: Some p?adic representations of the Smale horseshoe. Phys. Lett. A 176, 292-94 (1993)MathSciNet CrossRef ADS
    10.Arrowsmith, D.K., Vivaldi, F.: Geometry of p-adic Siegel discs. Physica D 71, 222-36 (1994)MathSciNet CrossRef ADS MATH
    11.Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V.: Application of padic analysis to models of spontaneous breaking of the replica symmetry. J. Phys. A: Math. Gen. 32, 8785-791 (1999)MathSciNet CrossRef ADS MATH
    12.Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)MATH
    13.Beltrametti, E., Cassinelli, G.: Quantum mechanics and p?adic numbers. Found. Phys. 2, 1- (1972)MathSciNet CrossRef ADS
    14.Dobrushin, R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct. Anal. Appl. 2, 302-12 (1968)CrossRef MATH
    15.Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15, 458-86 (1970)CrossRef MATH
    16.Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187-20 (1995)MathSciNet CrossRef ADS MATH
    17.Dragovich, B., Khrennikov, A., Mihajlovic, D.: Linear fraction p-adic and adelic dynamical systems. Rep. Math. Phys. 60, 55-8 (2007)MathSciNet CrossRef ADS MATH
    18.Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics. P-Adic Numbers, Ultrametric Analysis, and Applications 1, 1-7 (2009)MathSciNet CrossRef MATH
    19.Efetov, K.B.: Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge (1997)MATH
    20.Fan, A.H., Liao, L.M., Wang, Y.F., Zhou, D.: p-adic repellers in Q p are subshifts of finite type. C. R. Math. Acad. Sci Paris 344, 219-24 (2007)MathSciNet CrossRef MATH
    21.Fan, A.H., Fan, S., Liao, L.M., Wang, Y.F.: On minimal decomposition of p-adic homographic dynamical systems. Adv. Math. 257, 92-35 (2014)MathSciNet CrossRef MATH
    22.Fisher, M.E.: The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597-16 (1974)CrossRef ADS
    23.Freund, P.G.O., Olson, M.: Non-Archimedian strings. Phys. Lett. B 199, 186-90 (1987)MathSciNet CrossRef ADS
    24.Gandolfo, D., Rozikov, U., Ruiz, J.: On p-adic Gibbs measures for hard core model on a Cayley Tree. Markov Proc. Rel. Topics 18, 701-20 (2012)MathSciNet MATH
    25.Ganikhodjaev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Phase transitions of the Ising model on \(\mathbb {Z}\) in the p-adic number field. Uzbek. Math. J. 4, 23-9 (1998). (Russian)
    26.Ganikhodjaev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Exsistence of phase transition for the Potts p-adic model on the set Z. Theor. Math. Phys. 130, 425-31 (2002)CrossRef
    27.Georgii, H.O.: Gibbs measures and phase transitions. Walter de Gruyter, Berlin (1988)CrossRef MATH
    28.Herman, M., Yoccoz, J.-C.: Generalizations of some theorems of small divisors to non-Archimedean fields. In: Geometric Dynamics (Rio de Janeiro, 1981), Lec. Notes in Math 1007, pp 408-47. Springer, Berlin (1983)
    29.Khamraev, M., Mukhamedov, F.M.: On p-adic λ-model on the Cayley tree. Jour. Math. Phys. 45, 4025-034 (2004)MathSciNet CrossRef ADS MATH
    30.Khamraev, M., Mukhamedov, F.: On a class of rational p-adic dynamical systems. Jour. Math. Anal. Appl. 315, 76-9 (2006)MathSciNet CrossRef MATH
    31.Khamraev, M., Mukhamedov, F.M., Rozikov, U.A.: On uniqueness of Gibbs measure for p-adic λ-model on the Cayley tree. Lett. Math. Phys. 70(1), 17-8 (2004)MathSciNet CrossRef ADS MATH
    32.Khrennikov, A.Yu.: p-adic valued probability measures. Indag. Mathem. N.S. 7, 311-30 (1996)MathSciNet CrossRef MATH
  • 作者单位:Farrukh Mukhamedov (1)

    1. Department of Computational & Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, P.O. Box, 141, 25710, Kuantan, Pahang, Malaysia
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Quantum Physics
    Elementary Particles and Quantum Field Theory
    Mathematical and Computational Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9575
文摘
In the present paper, it is proposed the renormalization techniques in the investigation of phase transition phenomena in p-adic statistical mechanics. We mainly study p-adic λ-model on the Cayley tree of order two. We consider generalized p-adic quasi Gibbs measures depending for the λ-model. Such measures are constructed by means of certain recurrence equation, which defines a dynamical system. We study two regimes with respect to parameters. In the first regime we establish that the dynamical system has one attractive and two repelling fixed points, which predicts the existence of a phase transition. In the second regime the system has two attractive and one neutral fixed points, which predicts the existence of a quasi phase transition. A main point of this paper is to verify (i.e. rigorously prove) and confirm that the indicated predictions (via dynamical systems point of view) are indeed true. To establish the main result, we employ the methods of p-adic analysis, and therefore, our results are not valid in the real setting. Keywords p-adic numbers p-adic quasi Gibbs measure Phase transition Dynamical system Cayley tree

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700