On variable step Hermite–Birkhoff solvers combining multistep and 4-stage DIRK methods for stiff ODEs
详细信息    查看全文
  • 作者:Truong Nguyen-Ba
  • 关键词:Method for stiff ODE’s ; Hermite–Birkhoff method ; Endpoint error ; Number of steps ; Stiff DETEST problems ; Confluent vandermonde ; type systems
  • 刊名:Numerical Algorithms
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:71
  • 期:4
  • 页码:855-888
  • 全文大小:579 KB
  • 参考文献:1.Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff ODEs. SIAM J. Numer. Anal. 14, 1006–1021 (1977)MathSciNet CrossRef MATH
    2.Björck, A., Elfving, T.: Algorithms for confluent Vandermonde systems. Numer. Math. 21, 130–137 (1973)MathSciNet CrossRef MATH
    3.Björck, A., Pereyra, V.: Solution of Vandermonde systems of equations. Math. Comp. 24, 893–903 (1970)MathSciNet CrossRef MATH
    4.Brayton, R.K., Gustavson, F.G., Hachtel, G.D.: A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas. Proc. IEEE 60, 98–108 (1972)MathSciNet CrossRef
    5.Cash, J.R.: On the integration of stiff systems of ODEs using extended backward differentiation formula. Numer. Math. 34, 235–246 (1980)MathSciNet CrossRef MATH
    6.Cash, J.R.: The integration of stiff initial value problems in ODEs using modified extendedbackward differentiation formula. Comput. Math. Appl. 9, 645–657 (1983)MathSciNet CrossRef MATH
    7.Cash, J.R., Considine, S.: An MEBDF code for stiff initial value problems. ACM Trans. Math. Software 18, 142–160 (1992)MathSciNet CrossRef MATH
    8.Cash, J.R.: Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs. J. Comput. Appl. Math. 125, 117–130 (2000)MathSciNet CrossRef MATH
    9.D’Ambrosio, R., Izzo, G., Jackiewicz, Z.: Perturbed MEBDF methods. Comput. Math. Appl. 63, 851–861 (2012)MathSciNet CrossRef MATH
    10.Ebadi, M., Gokhale, M.Y.: Hybrid BDF methods for the numerical solutions of ordinary differential equations. Numer. Algorithms 55, 1–17 (2010). doi:10.​1007/​s11075-009-9354-4 MathSciNet CrossRef MATH
    11.Enright, W.H., Pryce, J.D.: Two Fortran packages for assessing initial value methods. ACM Trans. Math. Software 13, 1–27 (1987)CrossRef MATH
    12.Field, J., Noyes, R.M.: Oscillations in chemical systems. IV: Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys 60, 1877–1884 (1974)CrossRef
    13.Galimberti, G., Pereyra, V.: Solving confluent Vandermonde systems of Hermite type. Numer. Math. 18, 44–60 (1971)MathSciNet CrossRef MATH
    14.Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1971)MATH
    15.Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. corr. sec. print. Springer-Verlag, Berlin (2002)
    16.Hojjati, G., Rahimi, M.Y., Hosseini, S.M.: A-EBDF: an adaptive method for numerical solution of stiff systems of ODEs. Math. Comput. Simulation 66, 33–41 (2004)MathSciNet CrossRef MATH
    17.Hojjati, G., Rahimi, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model 30, 466–476 (2006)CrossRef MATH
    18.Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)MathSciNet CrossRef MATH
    19.Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method, Fundamentals of Algorithms. SIAM, Philadelphia (2003)CrossRef MATH
    20.Krogh, F.T. Changing stepsize in the integration of differential equations using modified divided differences. in Proc. Conf. on the Numerical Solution of Ordinary Differential Equations, University of Texas at Austin 1972. In: Bettis, D.G. (ed.) : Lecture Notes in Mathematics No. 362, pp 22–71. Springer-Verlag, Berlin (1974)
    21.Lambert, J.D.: Numerical Methods for Ordinary Differential Systems. Wiley, Chichester (1991)MATH
    22.Nguyen-Ba, T., Kengne, E., Vaillancourt, R.: One-step 4-stage Hermite–Birkhoff–Taylor ODE solver of order 12. Can. Appl. Math. Q. 16(1), 77–94 (2008)MathSciNet MATH
    23.Nguyen-Ba, T., Giordano, T., Vaillancourt, R.: Three-stage Hermite–Birkhoff solver of order 8 and 9 with variable step size for stiff ODEs. Calcolo (2014). doi:10.​1007/​s10092-014-0121-0
    24.Nordsieck, A.: On numerical integration of ordinary differential equations. Math. Comp. 16, 22–49 (1962)MathSciNet CrossRef MATH
    25.Petzold, L.R.: A description of DASSL: A differential/algebraic system solver. In: Proceedings of IMACS World Congress, Montréal (1982)
    26.Robertson, H.H. The solution of a set of reaction rate equations. In: Walsh, J. (ed.) : Numer Anal., an Introduction, pp 178–182. Academic Press (1966)
    27.Sharp, P.W.: Numerical comparison of explicit Runge–Kutta pairs of orders four through eight. ACM Trans. Math. Software 17, 387–409 (1991)CrossRef MATH
  • 作者单位:Truong Nguyen-Ba (1)

    1. Department of Mathematics and Statistics, University of Ottawa, K1N 6N5, Ottawa, Ontario, Canada
  • 刊物类别:Computer Science
  • 刊物主题:Numeric Computing
    Algorithms
    Mathematics
    Algebra
    Theory of Computation
  • 出版者:Springer U.S.
  • ISSN:1572-9265
文摘
Variable-step (VS) 4-stage k-step Hermite–Birkhoff (HB) methods of order p = (k + 2), p = 9, 10, denoted by HB (p), are constructed as a combination of linear k-step methods of order (p − 2) and a diagonally implicit one-step 4-stage Runge–Kutta method of order 3 (DIRK3) for solving stiff ordinary differential equations. Forcing a Taylor expansion of the numerical solution to agree with an expansion of the true solution leads to multistep and Runge–Kutta type order conditions which are reorganized into linear confluent Vandermonde-type systems. This approach allows us to develop L(a)-stable methods of order up to 11 with a > 63°. Fast algorithms are developed for solving these systems in O (p 2) operations to obtain HB interpolation polynomials in terms of generalized Lagrange basis functions. The stepsizes of these methods are controlled by a local error estimator. HB(p) of order p = 9 and 10 compare favorably with existing Cash modified extended backward differentiation formulae of order 7 and 8, MEBDF(7-8) and Ebadi et al. hybrid backward differentiation formulae of order 10 and 12, HBDF(10-12) in solving problems often used to test higher order stiff ODE solvers on the basis of CPU time and error at the endpoint of the integration interval.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700