Strong approximation of fractional Sobolev maps
详细信息    查看全文
  • 作者:Pierre Bousquet (1)
    Augusto C. Ponce (2)
    Jean Van Schaftingen (2)
  • 关键词:58D15 ; 46E35 ; 46T20 ; Strong density ; Sobolev maps ; fractional Sobolev spaces ; simply connectedness
  • 刊名:Journal of Fixed Point Theory and Applications
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 页码:133-153
  • 全文大小:337 KB
  • 参考文献:1. A. Banyaga, / The structure of classical diffeomorphism groups. Mathematics and Its Applications 400, Kluwer Academic Publishers Group, Dordrecht, 1997.
    2. Bethuel F.: The approximation problem for Sobolev maps between two manifolds. Acta Math. 167, 153-06 (1991) CrossRef
    3. Bethuel F.: Approximations in trace spaces defined between manifolds. Nonlinear Anal. 24, 121-30 (1995) 46X(93)E0025-X" target="_blank" title="It opens in new window">CrossRef
    4. Bethuel F., Zheng X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80, 60-5 (1988) CrossRef
    5. Bourdaud G.: Ondelettes et espaces de Besov. Rev. Mat. Iberoamericana 11, 477-12 (1995) CrossRef
    6. Bourgain J., Brezis H., Mironescu P.: / H 1/2 maps with values into the circle: Minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes études Sci. 99, 1-15 (2004) CrossRef
    7. Bourgain J., Brezis H., Mironescu P.: Lifting in Sobolev spaces. J. Anal. Math. 80, 37-6 (2000) CrossRef
    8. Bousquet P., Ponce A.C., Van Schaftingen J.: Density of smooth maps for fractional Sobolev spaces / W / s, / p into / ?/em> simply connected manifolds when / s ?1. Confluentes Math. 5, 3-2 (2013)
    9. P. Bousquet, A. C. Ponce and J. Van Schaftingen, / Strong density for higher order Sobolev spaces into compact manifolds. To appear.
    10. Brezis H., Mironescu P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387-04 (2001) CrossRef
    11. Brezis H., Nirenberg L.: Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1, 197-63 (1995) CrossRef
    12. Escobedo M.: Some remarks on the density of regular mappings in Sobolev classes of / S / M -valued functions. Rev. Mat. Univ. Complut. Madrid 1, 127-44 (1988)
    13. Gagliardo E.: Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in n variabili. Rend. Semin. Mat. Univ. Padova 27, 284-05 (1957)
    14. Giaquinta M., Mucci D.: Density results for the / W 1/2 energy of maps into a manifold. Math. Z. 251, 535-49 (2005) CrossRef
    15. Haj?asz P.: Approximation of Sobolev mappings. Nonlinear Anal. 22, 1579-591 (1994) 46X(94)90190-2" target="_blank" title="It opens in new window">CrossRef
    16. Hang F., Lin F.-H.: Topology of Sobolev mappings. II Acta Math. 191, 55-07 (2003) CrossRef
    17. Hardt R., Lin F.-H.: Mappings minimizing the / L / p norm of the gradient. Comm. Pure Appl. Math. 40, 555-88 (1987) CrossRef
    18. Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
    19. M. W. Hirsch, / Differential Topology. Grad. Texts in Math. 33, Springer-Verlag, New York, 1994.
    20. Marcus M., Mizel V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33, 217-29 (1979) 46
文摘
Brezis and Mironescu have announced several years ago that for a compact manifold \({N^n \subset \mathbb{R}^\upsilon}\) and for real numbers 0 s \({1 \leq p , the class \({C^\infty(\overline{Q}^m;N^n)}\) of smooth maps on the cube with values into N n is dense with respect to the strong topology in the Sobolev space \({W^{s,p}(Q^m;N^n)}\) when the homotopy group \({\pi_{{\lfloor}sp{\rfloor}}(N^n)}\) of order \({\lfloor sp \rfloor}\) is trivial. The proof of this beautiful result is long and rather involved. Under the additional assumption that N n is \({\lfloor sp \rfloor}\) simply connected, we give a shorter and different proof of their result. Our proof for \({sp \geq 1}\) is based on the existence of a retraction of \({\mathbb{R}^\upsilon}\) onto Nn except for a small subset in the complement of N n and on the Gagliardo–Nirenberg interpolation inequality for maps in \({W^{1,q} \cap L^\infty}\) . In contrast, the case \({sp relies on the density of step functions on cubes in W s,p .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700