Benefit of nicorandil using an immunologic murine model of experimental colitis
详细信息    查看全文
  • 作者:Azadeh Hosseini-Tabatabaei (1)
    Hadi Esmaily (1)
    Reza Rahimian (2)
    Reza Khorasani (1)
    Maryam Baeeri (1)
    Ahmadreza Barazesh-Morgani (1)
    Fatemeh Sari-Aslani (3)
    Mohammad Abdollahi (1)
  • 关键词:Nicorandil ; Inflammatory bowel disease ; Immunologic ; Myeloperoxidase ; Inflammatory cytokines ; 2 ; 4 ; 6 ; trinitrobenzene sulphonic acid (TNBS)
  • 刊名:Central European Journal of Biology
  • 出版年:2009
  • 出版时间:March 2009
  • 年:2009
  • 卷:4
  • 期:1
  • 页码:74-85
  • 全文大小:1069KB
  • 参考文献:1. Jurjus A.R., Khoury N.N., Reimund J.M., Animal models of inflammatory bowel disease, J. Pharmacol. Toxicol. Method., 2004, 50, 81-2 CrossRef
    2. Rezaie A., Parker R.D., Abdollahi M., Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause?, Dig. Dis. Sci., 2007, 52, 2015-021 CrossRef
    3. Blokhina O., Virolainen E., Fagerstedt K.V., Anti-oxidants, oxidative damage and oxygen deprivation stress: a review, Ann. Bot. (Lond)., 2003, 91, 179-94 CrossRef
    4. Middleton S.J., Shorthouse M., Hunter J.O., Increased nitric oxide synthesis in ulcerative colitis, Lancet, 1993, 341, 465-66 CrossRef
    5. Panaccione R., Ferraz J.G., Beck P., Advances in medical therapy of inflammatory bowel disease, Curr. Opin. Pharmacol., 2005, 5, 566-72
    6. Langmead L., Rampton D.S., Review article: complementary and alternative therapies for inflammatory bowel disease, Review, Aliment. Pharmacol. Ther., 2006, 23, 341-49 CrossRef
    7. Ashtaral-Nakhai L., Mohammadirad A., Yasa N., Minaie B., Nikfar S., Ghazanfari G., et al., Benefits of Zataria multiflora Boiss in experimental model of mouse inflammatory bowel disease, Evid. Based Complement. Alternat. Med., 2007, 4, 43-0 CrossRef
    8. Ghafari H., Yasa N., Mohammadirad A., Dehghan G., Zamani M.J., Nikfar S., et al., Protection by Ziziphora clinopoides of acetic acid-induced toxic bowel inflammation through reduction of cellular lipid peroxidation and myeloperoxidase activity, Hum. Exp. Toxicol., 2006, 25, 325-32 CrossRef
    9. Ghazanfari G., Minaie B., Yasa N., Nakhai L., Mohammadirad A., Nikfar S., et al., Biochemical and histopathological evidences for beneficial effects of Satureja khuzestanica jamzad essential oil on the mouse model of inflammatory bowel diseases, Toxicol. Mech. Methods, 2006, 16, 365-72 CrossRef
    10. Rahimi R., Mozaffari S., Abdollahi M., On the use of herbal medicines in management of inflammatory bowel diseases: a systematic review of animal and human studies, Dig. Dis. Sci., 2008, [Epub ahead of print] (DOI 10.1007/s10620-008-0368-x)
    11. Ebrahimi F., Esmaily H., Baeeri M., Mohammadirad A., Fallah S., Abdollahi M., Molecular evidences on the benefits of N-acetylcysteine in experimental colitis, Cent. Eur. J. Biol., 2008, 3, 135-42 CrossRef
    12. Elahi B., Nikfar S., Derakhshani S., Vafaie M., Abdollahi M., On the benefit of probiotics in the management of pouchitis in patients underwent ileal pouch anal anastomosis: a meta-analysis of controlled clinical trials, Dig. Dis. Sci., 2007, 53, 1278-284 CrossRef
    13. Rezaie A., Taghavi Bayat B., Abdollahi M., Biologic management of fistulizing Crohn’s disease, Int. J. Pharmacol., 2005, 1, 17-4 CrossRef
    14. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of the benefit of probiotics in maintaining remission of human ulcerative colitis: evidence for prevention of disease relapse and maintenance of remission, Arch. Med. Sci., 2008, 4, 185-90
    15. Rahimi R, Nikfar S., Rahimi F., Elahi B., Derakhshani S., Vafaie M., et al., A meta-analysis on the efficacy of probiotics for maintenance of remission and prevention of clinical and endoscopic relapse in Crohn’s disease, Dig. Dis. Sci., 2008, 53, 2524-531 CrossRef
    16. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of antibiotic therapy for active ulcerative colitis, Dig. Dis. Sci., 2007, 52, 2920-925 CrossRef
    17. Rahimi R., Nikfar S., Rezaie A., Abdollahi M., A meta-analysis of broad spectrum antibiotic therapy in patients with active Crohn’s disease, Clin. Ther., 2006, 28, 1983-988 CrossRef
    18. Dubinsky M.C., Targeting Therapy in Pediatric Inflammatory Bowel Disease, Curr. Treat. Options Gastroenterol., 2004, 7, 391-05 CrossRef
    19. Akai K., Wang Y., Sato K., Sekiguchi N., Sugimura A., Kumagai T., et al., Vasodilatory effect of nicorandil on coronary arterial microvessels: its dependency on vessel size and the involvement of the ATP-sensitive potassium channels, J. Cardiovasc. Pharmacol., 1995, 26, 541-47 CrossRef
    20. Hosseini-Tabatabaei A., Abdollahi M., Potassium channel openers and improvement of toxic stress: Do they have role in the management of Inflammatory bowel disease?, Inflamm. Allergy Drug Targets, 2008, 7, 129-35 CrossRef
    21. Heywood G.J., Thomas P.S., Nicorandil inhibits degranulation and TNF-alpha release from RBL-2H3 cells, Inflamm. Res., 2002, 51, 176-81 CrossRef
    22. Facundo H.T., De Paula J.G., Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels are redox-sensitive pathways that control reactive oxygen species production, Free Radic. Biol. Med., 2007, 42, 1039-048 CrossRef
    23. Facundo H.T., De Paula J.G, Kowaltowski A.J., Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death, J. Bioenerg. Biomembr., 2005, 37, 75-2 CrossRef
    24. Wang Y.P., Maeta H., Mizoguchi K., Suzuki T., Yamashita Y., Oe M., Intestinal ischemia preconditions myocardium: role of protein kinase C and mitochondrial K(ATP) channel, Cardiovasc. Res., 2002, 55, 576-82 CrossRef
    25. Teshima Y., Akao M., Baumgartner W.A., Marbán E., Nicorandil prevents oxidative stress-induced apoptosis in neurons by activating mitochondrial ATP-sensitive potassium channels, Brain. Res., 2003, 990, 45-0 CrossRef
    26. Akao M., Teshima Y., Marbán E., Antiapoptotic effect of nicorandil mediated by mitochondrial atpsensitive potassium channels in cultured cardiac myocytes, J. Am. Coll. Cardiol., 2002, 40, 803-10 CrossRef
    27. Nagata K., Obata K., Odashima M., Yamada A., Somura F., Nishizawa T., et al., Nicorandil inhibits oxidative stress-induced apoptosis in cardiac myocytes through activation of mitochondrial ATP-sensitive potassium channels and a nitrate-like effect, J. Mol. Cell. Cardiol., 2003, 35, 1505-512 CrossRef
    28. Xu J., Nagata K., Obata K., Ichihara S., Izawa H., Noda A., et al., Nicorandil promotes myocardial capillary and arteriolar growth in the failing heart of Dahl salt-sensitive hypertensive rats, Hypertension, 2005, 46, 719-24 CrossRef
    29. Ismail H.A., Khalifa M.M., Hassan M.K., Ashour O.M., Insights in the mechanisms underlying the anti-ulcer activity of nicorandil, Pharmazie, 2007, 62, 60-7
    30. Mourelle M., Vilaseca J., Guarner F., Salas A., Malagelada J.R., Toxic dilatation of colon in a rat model of colitis is linked to an inducible form of nitric oxide synthase, Am. J. Physiol., 1996, 270, G425–G430
    31. Abdollahi M., Dehpour A.R., Baharnouri G., Alteration by rubidium of rat submandibular secretion of protein and N-acetyl-D-glucosaminidase, Tox. Subst. Mech., 1998, 17, 121-31 CrossRef
    32. Wallace J.L., Keenan C.M., Gale D., Shoupe T.S., Exacerbation of experimental colitis by nonsteroidal anti-inflammatory drugs is not related to elevated leukotriene B4 synthesis, Gastroenterology, 1992, 102, 18-7
    33. Mustafa A., El-Medany A., Hagar H.H., El-Medany G., Ginkgo biloba attenuates mucosal damage in a rat model of ulcerative colitis, Pharmacol. Res., 2006, 53, 324-30 CrossRef
    34. Cuzzocrea S., Ianaro A., Wayman N.S., Mazzon E., Pisano B., Dugo L., et al., The cyclopentenone prostaglandin 15-deoxy-delta(12,14)-PGJ2 attenuates the development of colon injury caused by dinitrobenzene sulphonic acid in the rat, Br. J. Pharmacol., 2003, 138, 678-88 CrossRef
    35. Dehghan G., Shafiee A., Ghahremani M.H., Ardestani S.K., Abdollahi M., Antioxidant potential of various extracts from Ferula szovitsiana in relation to their phenolic content, Pharm. Biol., 2007, 45, 691-99 CrossRef
    36. Astaneie F., Afshari M., Mojtahedi A., Mostafalou S., Zamani M.J., Larijani B., et al., Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients, Arch. Med. Res., 2005, 36, 376-81 CrossRef
    37. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265-75
    38. Torres M.I., García-Martin M., Fernández M.I., Nieto N., Gil A., Ríos A., Experimental colitis induced by trinitrobenzenesulfonic acid: an ultrastructural and histochemical study, Dig. Dis. Sci., 1999, 44, 2523-529 CrossRef
    39. Kolgazi M., Jahovic N., Yuksel M., Ercan F., Alican I., α-lipoic acid modulates gut inflammation induced by trinitrobenzene sulfonic acid in rats, J. Gastroenterol. Hepatol., 2007, 22, 1859-865 CrossRef
    40. Shen C., De Hertogh G., Bullens D.M., Van Assche G., Geboes K., Rutgeerts P., et al., Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization?, Inflamm. Bowel. Dis., 2007, 13, 308-16 CrossRef
    41. Rahimi R., Nikfar S., Abdollahi M., Do anti-tumor necrosis factors induce response and remission in patients with acute refractory Crohn’s disease? A systematic meta-analysis of controlled clinical trials, Biomed. Pharmacother., 2007, 61, 75-0 CrossRef
    42. Rahimi R., Nikfar S., Abdollahi M., Meta-analysis technique confirms the effectiveness of anti-TNF-a in the management of active ulcerative colitis when administered in combination with corticosteroids, Med. Sci. Monitor., 2007, 13, PI13–PI18
    43. Ludwiczek O., Vannier E., Borggraefe I., Kaser A., Siegmund B., Dinarello C.A., et al., Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease, Clin. Exp. Immunol., 2004, 138, 323-29 CrossRef
    44. Simmonds N.J., Rampton D.S., Inflammatory bowel disease—a radical view, Gut, 1993, 34, 865-68 CrossRef
    45. Suzuki M., Saito T., Sato T., Tamagawa M., Miki T., Seino S., Nakaya H., Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice, Circulation, 2003, 107, 682-85 CrossRef
    46. Hanley P.J., Daut J., K(ATP) channels and preconditioning: a re-examination of the role of mitochondrial K(ATP) channels and an overview of alternative mechanisms, J. Mol. Cell. Cardiol., 2005, 39, 17-0 CrossRef
    47. Inoue I., Nagase H., Kishi K., Higuti T., ATP-sensitive K+ channel in the mitochondrial inner membrane, Nature, 1991, 352, 244-47 CrossRef
    48. Deby-Dupont G., Deby C., Lamy M., Neutrophil myeloperoxidase revisited: its role in health and disease, Intensivmed., 1999, 36, 500-51 CrossRef
    49. Kruidenier L., Kuiper I., Van Duijn W., Mieremet-Ooms M.A., van Hogezand R.A., Lamers C.B., et al., Imbalanced secondary mucosal antioxidant response in inflammatory bowel disease, J. Pathol., 2003, 201, 17-7 CrossRef
    50. Kruidenier L., Kuiper I., Lamers C.B., Verspaget H.W., Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants, J. Pathol., 2003, 201, 28-6 CrossRef
    51. Ahmed A.O., Sharifzadeh M., Nikfar S., Jamshidi H.R., Abdollahi M., Prevention by L-arginine/nitric oxide of chlordiazepoxide-induced toxic reactions in the rat salivary gland, Toxicol. Mech. Method., 2006, 16, 331-37 CrossRef
    52. Abdollahi M., Dehpour A.R., Shafayee F., L-Arginine/nitric oxide pathway and interaction with lead acetate on rat submandibulary gland function, Pharmacol. Toxicol., 2000, 87, 198-03 CrossRef
    53. Kolios G., Valatas V., Ward S.G., Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle, Immunology, 2004, 113, 427-37 CrossRef
    54. Barrachina M.D., Panes J., Esplugues J.V., Role of nitric oxide in gastrointestinal inflammatory and ulcerative diseases: perspective for drugs development, Curr. Pharm. Des., 2001, 7, 31-8 CrossRef
    55. Jahanshahi G., Motavasel V., Rezaie A., Hashtroudi A.A., Daryani N.E., Abdollahi M., Alterations in antioxidant power and levels of epidermal growth factor and nitric oxide in saliva of patients with inflammatory bowel diseases, Dig. Dis. Sci., 2004, 49, 1752-757 CrossRef
    56. Horinaka S., Kobayashi N., Yabe A., Asakawa H., Yagi H., Mori Y., et al., Nicorandil protects against lethal ischemic ventricular arrhythmias and up-regulates endothelial nitric oxide synthase expression and sulfonylurea receptor 2 mRNA in conscious rats with acute myocardial infarction, Cardiovasc. Drugs Ther., 2004, 18, 13-2 CrossRef
    57. Horinaka S., Kobayashi N., Higashi T., Hara K., Hara S., Matsuoka H., Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat, J. Cardiovasc. Pharmacol., 2001, 38, 200-10 CrossRef
    58. Pompermayer K., Souza D.G., Lara G.G., Silveira K.D., Cassali G.D., Andrade A.A., et al., The ATPsensitive potassium channel blocker glibenclamide prevents renal ischemia/reperfusion injury in rats, Kidney Int., 2005, 67, 1785-796 CrossRef
    59. Pompermayer K., Amaral F.A., Fagundes C.T., Vieira A.T., Cunha F.Q., Teixeira M.M., et al., Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury, Eur. J. Pharmacol., 2007, 556, 215-22 CrossRef
    60. Flavio A.G., Cunha F.Q., Francescato H.D., Soares T.J., Costa R.S., Barbosa Junior F., et al., ATP-sensitive potassium channel blockage attenuates cisplatin-induced renal damage, Kidney Blood Press. Res., 2007, 30, 289-98 CrossRef
    61. Sarkhail P., Rahmanipour S., Fadyevatan S., Mohammadirad A., Dehghan G., Amin G., et al., Antidiabetic effect of Phlomis anisodonta: Effects on hepatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes, Pharmacol. Res., 2007, 56, 261-66 CrossRef
    62. Cocks T.M., King S.J., Angus J.A., Glibenclamide is a competitive antagonist of the thromboxane A2 receptor in dog coronary artery in vitro, Br. J. Pharmacol., 1990, 100, 375-78
    63. Rampton D.S., Collins C.E., Review article: thromboxanes in inflammatory bowel disease—pathogenic and therapeutic implications, Aliment. Pharmacol. Ther., 1993, 7, 357-67 CrossRef
    64. Reichert S., Antunes A., Tréchot P., Barbaud A., Weber M., Schmutz J.L., Major aphthous stomatitis induced by nicorandil, Eur. J. Dermatol., 1997, 7, 132-33
    65. Watson A., Al-Ozairi O., Fraser A., Loudon M., O’Kelly T., Nicorandil associated anal ulceration, Lancet, 2002, 360, 546-47 CrossRef
    66. McKenna D.J., Donnelly J., Armstrong D.K., Nicorandil-induced leg ulceration, Br. J. Dermatol., 2007, 156, 394-96 CrossRef
  • 作者单位:Azadeh Hosseini-Tabatabaei (1)
    Hadi Esmaily (1)
    Reza Rahimian (2)
    Reza Khorasani (1)
    Maryam Baeeri (1)
    Ahmadreza Barazesh-Morgani (1)
    Fatemeh Sari-Aslani (3)
    Mohammad Abdollahi (1)

    1. Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
    2. School of Medicine, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
    3. School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71345, Iran
  • ISSN:1644-3632
文摘
Inflammatory bowel disease (IBD) is a chronic inflammatory condition with an unknown etiology. Nicorandil, a potassium channel opener, has been used for many years for the treatment of angina. Recently, it has been shown that nicorandil possesses some novel traits such as anti-apoptotic, gastroprotective, free radical scavenging, and anti-inflammatory properties. Therefore, we set out to examine the possible beneficial effect of nicorandil in a rat model of IBD. Colitis was induced by rectal administration of 2,4,6-trintrobenzene sulphonic acid (TNBS) into rats. Groups of animals used in this study were sham, control, and exposure to dexamethasone, nicorandil, glibenclamid (a pure adenosine triphosphate sensitive potassium channel (KATP) blocker), or nicorandil plus glibenclamid. Drugs were administered by gavage and animals were sacrificed after 7 days. Biochemical markers, including TNF-α and IL-1β, ferric reducing/antioxidant power (FRAP), myeloperoxidase (MPO) activity and thiobarbitoric acid-reactive substance (TBARS), were measured in the homogenate of colonic tissue. Results indicate that nicorandil significantly reduces macroscopic and histological damage induced by TNBS. Nicorandil diminishes MPO activity and levels of TBARS, TNF-? and IL-1β in damaged colonic tissue with a concomitant increase in FRAP value (P<0.01). These effects were not reversed by coadministration of glibenclamide. In conclusion, nicorandil is able to ameliorate experimental IBD with a dose in which it does not show any anti-hypertensive effect, and the mechanism of which is partially or totally independent from KATP channels. It is hypothesized that nitric oxide donation and free-radical scavenging properties of nicorandil upregulate endothelial nitric oxide synthase may be responsible for this phenomenon. These findings suggest that nicorandil can be useful in treatment of IBD, although further investigations are needed to elucidate the mechanisms involved.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700