Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus
详细信息    查看全文
  • 作者:Roberto A Barrero (1)
    Gabriel Keeble-Gagnère (1)
    Bing Zhang (2) (3)
    Paula Moolhuijzen (1) (3)
    Kazuho Ikeo (4)
    Yoshio Tateno (4)
    Takashi Gojobori (4)
    Felix D Guerrero (5)
    Ala Lew-Tabor (1) (2) (3) (6)
    Matthew Bellgard (1) (3)
  • 刊名:BMC Genomics
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 全文大小:3522KB
  • 参考文献:1. Jeyaprakash A, Hoy MA: First divergence time estimate of spiders, scorpions, mites and ticks (subphylum: Chelicerata) inferred from mitochondrial phylogeny. / Exp Appl Acarol 2009,47(1):1-8. CrossRef
    2. Figueiredo LT, Badra SJ, Pereira LE, Szabo MP: Report on ticks collected in the Southeast and Mid-West regions of Brazil: analyzing the potential transmission of tick-borne pathogens to man. / Rev Soc Bras Med Trop 1999,32(6):613-19. CrossRef
    3. Estrada-Pena A, Bouattour A, Camicas JL, Guglielmone A, Horak I, Jongejan F, Latif A, Pegram R, Walker AR: The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. / Exp Appl Acarol 2006,38(2-):219-35. CrossRef
    4. Pagel Van Zee J, Geraci NS, Guerrero FD, Wikel SK, Stuart JJ, Nene VM, Hill CA: Tick genomics: the Ixodes genome project and beyond. / Int J Parasitol 2007,37(12):1297-305. CrossRef
    5. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. / Cell 2004,116(2):281-97. CrossRef
    6. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. / Cell 2005,120(1):15-0. CrossRef
    7. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. / Science 2005,310(5755):1817-821. CrossRef
    8. Lee Y, Jeon K, Lee JT, Kim S, Kim VN: MicroRNA maturation: stepwise processing and subcellular localization. / EMBO J 2002,21(17):4663-670. CrossRef
    9. Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. / Nat Rev Mol Cell Biol 2007,8(1):23-6. CrossRef
    10. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim N: The nuclear RNase III Drosha initiates microRNA processing. / Nature 2003,425(6956):415-19. CrossRef
    11. Khvorova A, Reynolds A, Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. / Cell 2003,115(2):209-16. CrossRef
    12. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. / Cell 2003,115(2):199-08. CrossRef
    13. Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML: A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. / Genome Res 2008,18(6):957-64. CrossRef
    14. Jaubert S, Mereau A, Antoniewski C, Tagu D: MicroRNAs in Drosophila: the magic wand to enter the Chamber of Secrets? / Biochimie 2007,89(10):1211-220. CrossRef
    15. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. / Nucleic Acids Res 2008, (36 Database):D154-58.
    16. Peterson KJ, Cotton JA, Gehling JG, Pisani D: The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. / Philos Trans R Soc Lond B Biol Sci 2008,363(1496):1435-443. CrossRef
    17. Sempere LF, Martinez P, Cole C, Baguna J, Peterson KJ: Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. / Evol Dev 2007,9(5):409-15. CrossRef
    18. Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ: MicroRNAs and the advent of vertebrate morphological complexity. / Proc Natl Acad Sci USA 2008,105(8):2946-950. CrossRef
    19. Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA: MicroRNA-183 family conservation and ciliated neurosensory organ expression. / Evol Dev 2008,10(1):106-13. CrossRef
    20. Price N, Cartwright RA, Sabath N, Graur D, Azevedo RB: Neutral evolution of robustness in Drosophila microRNA precursors. / Mol Biol Evol
    21. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ: The deep evolution of metazoan microRNAs. / Evol Dev 2009,11(1):50-8. CrossRef
    22. Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z: MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. / Nucleic Acids Res 2007, (35 Web Server):W339-44.
    23. Berezikov E, Liu N, Flynt AS, Hodges E, Rooks M, Hannon GJ, Lai EC: Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. / Nat Genet 42(1):6-. author reply 9-0
    24. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC: The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. / Nat Struct Mol Biol 2008,15(4):354-63. CrossRef
    25. Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. / Nat Rev Mol Cell Biol 2005,6(5):376-85. CrossRef
    26. Christodoulou F, Raible F, Tomer R, Simakov O, Trachana K, Klaus S, Snyman H, Hannon GJ, Bork P, Arendt D: Ancient animal microRNAs and the evolution of tissue identity. / Nature 463(7284):1084-088.
    27. Pattatucci AM, Kaufman TC: The homeotic gene Sex combs reduced of Drosophila melanogaster is differentially regulated in the embryonic and imaginal stages of development. / Genetics 1991,129(2):443-61.
    28. Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. / PLoS Biol 2005,3(3):e85. CrossRef
    29. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. / Nature 2000,403(6772):901-06. CrossRef
    30. Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V: Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. / Dev Biol 2003,259(1):9-8. CrossRef
    31. Baskerville S, Bartel DP: Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. / RNA 2005,11(3):241-47. CrossRef
    32. Osterkamp J, Wahl U, Schmalfuss G, Haas W: Host-odour recognition in two tick species is coded in a blend of vertebrate volatiles. / J Comp Physiol A 1999,185(1):59-7. CrossRef
    33. Sokol NS, Xu P, Jan YN, Ambros V: Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. / Genes Dev 2008,22(12):1591-596. CrossRef
    34. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM: Extensive post-transcriptional regulation of microRNAs and its implications for cancer. / Genes Dev 2006,20(16):2202-207. CrossRef
    35. Wulczyn FG, Smirnova L, Rybak A, Brandt C, Kwidzinski E, Ninnemann O, Strehle M, Seiler A, Schumacher S, Nitsch R: Post-transcriptional regulation of the let-7 microRNA during neural cell specification. / FASEB J 2007,21(2):415-26. CrossRef
    36. Viswanathan SR, Daley GQ, Gregory RI: Selective blockade of microRNA processing by Lin28. / Science 2008,320(5872):97-00. CrossRef
    37. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM: bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. / Cell 2003,113(1):25-6. CrossRef
    38. Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. / J Cell Sci 2007,120(Pt 17):3045-052. CrossRef
    39. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. / Nat Genet 2006,38(2):228-33. CrossRef
    40. Citelli M, Lara FA, da Silva Vaz I Jr, Oliveira PL: Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. / Mol Biochem Parasitol 2007,151(1):81-8. CrossRef
    41. Graca-Souza AV, Maya-Monteiro C, Paiva-Silva GO, Braz GR, Paes MC, Sorgine MH, Oliveira MF, Oliveira PL: Adaptations against heme toxicity in blood-feeding arthropods. / Insect Biochem Mol Biol 2006,36(4):322-35. CrossRef
    42. Oliveira PL, Kawooya JK, Ribeiro JM, Meyer T, Poorman R, Alves EW, Walker FA, Machado EA, Nussenzveig RH, Padovan GJ, Masuda H: A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, Rhodnius prolixus. Isolation and characterization. / J Biol Chem 1995,270(18):10897-0901. CrossRef
    43. Inokuma H, Kemp DH, Willadsen P: Prostaglandin E2 production by the cattle tick (Boophilus microplus) into feeding sites and its effect on the response of bovine mononuclear cells to mitogen. / Vet Parasitol 1994,53(3-):239-99. CrossRef
    44. L'Amoreaux WJ, Junaid L, Trevidi S: Morphological evidence that salivary gland degeneration in the American dog tick, Dermacentor variabilis (Say), involves programmed cell death. / Tissue Cell 2003,35(2):95-9. CrossRef
    45. Freitas DR, Rosa RM, Moura DJ, Seitz AL, Colodel EM, Driemeier D, Da Silva Vaz I Jr, Masuda A: Cell death during preoviposition period in Boophilus microplus tick. / Vet Parasitol 2007,144(3-):321-27. CrossRef
    46. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT: Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. / Clin Cancer Res 2009,15(17):5473-477. CrossRef
    47. Zhang X, Cairns M, Rose B, O'Brien C, Shannon K, Clark J, Gamble J, Tran N: Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. / Int J Cancer 2009,124(12):2855-863. CrossRef
    48. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. / Proc Natl Acad Sci USA 1998,95(25):14863-4868. CrossRef
    49. Yang Z, Kumar S, Nei M: A new method of inference of ancestral nucleotide and amino acid sequences. / Genetics 1995,141(4):1641-650.
    50. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. / Mol Biol Evol 2007,24(8):1596-599. CrossRef
    51. Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. / Brief Bioinform 2008,9(4):299-06. CrossRef
    52. Stewart NP, Callow LL, Duncalfe F: Biological comparisons between a laboratory-maintained and a recently isolated field strain of Boophilus microplus. / J Parasitol 1982, (68):691-94.
    53. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. / Genome Res 2008,18(11):1851-858. CrossRef
    54. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. / Bioinformatics 2008,24(5):713-14. CrossRef
    55. Smith AD, Xuan Z, Zhang MQ: Using quality scores and longer reads improves accuracy of Solexa read mapping. / BMC Bioinformatics 2008, 9:128. CrossRef
    56. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. / Genome Biol 2009,10(3):R25. CrossRef
    57. Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. / Bioinformatics 2009,25(14):1754-760. CrossRef
    58. Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N: Discovering microRNAs from deep sequencing data using miRDeep. / Nat Biotechnol 2008,26(4):407-15. CrossRef
    59. Kent WJ: BLAT--the BLAST-like alignment tool. / Genome Res 2002,12(4):656-64.
    60. Hofacker IL: Vienna RNA secondary structure server. / Nucleic Acids Res 2003,31(13):3429-431. CrossRef
    61. Romualdi C, Bortoluzzi S, Danieli GA: Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests. / Hum Mol Genet 2001,10(19):2133-141. CrossRef
    62. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. / Bioinformatics 2007,23(21):2947-948. CrossRef
    63. Jukes TH, Cantor CR: / Evolution of protein molecules. New York: Academic Press; 1969.
  • 作者单位:Roberto A Barrero (1)
    Gabriel Keeble-Gagnère (1)
    Bing Zhang (2) (3)
    Paula Moolhuijzen (1) (3)
    Kazuho Ikeo (4)
    Yoshio Tateno (4)
    Takashi Gojobori (4)
    Felix D Guerrero (5)
    Ala Lew-Tabor (1) (2) (3) (6)
    Matthew Bellgard (1) (3)

    1. Centre for Comparative Genomics, Murdoch University, WA, 6150, Queensland, Australia
    2. Department of Employment, Economic Development and Innovation (DEEDI) Biotechnology Laboratories, The University of Queensland, St Lucia, QLD, 4067, Queensland, Australia
    3. CRC for Beef Genetic Technologies, University of New England, Armidale, NSW, 2351, Australia
    4. Center for Information Biology and DNA Databank of Japan, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
    5. US Department of Agriculture, Agricultural Research Service, 2700 Fredericksburg, Rd., Kerrville, TX, 78028, USA
    6. Queensland Alliance for Agriculture and Food Innovation Institute, The University of Queensland, c/o DEEDI, St Lucia, QLD, 4067, Queensland, Australia
文摘
Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700