Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: a density functional theory study with implications for lithium–air batteries
详细信息    查看全文
  • 作者:Ji Hye Lee ; Sung Gu Kang ; Il Tae Kim ; Soonchul Kwon…
  • 关键词:Lithium–air batteries ; N ; doped graphene ; Oxygen reduction reaction ; Lithium oxides ; Density functional theory
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:135
  • 期:3
  • 全文大小:2,446 KB
  • 参考文献:1.Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193CrossRef
    2.Kraytsberg A, Ein-Eli Y (2011) J Power Sources 196:886CrossRef
    3.Franco AA, Xue KH (2013) Ecs J Solid State Sci Technol 2:M3084CrossRef
    4.Allen MJ, Tung VC, Kaner RB (2010) Chem Rev 110:132CrossRef
    5.Xiao J, Mei DH, Li XL, Xu W, Wang DY, Graff GL, Bennett WD, Nie ZM, Saraf LV, Aksay IA, Liu J, Zhang JG (2011) Nano Lett 11:5071CrossRef
    6.Yoo E, Zhou HS (2011) ACS Nano 5:3020CrossRef
    7.Wang ZL, Xu D, Xu JJ, Zhang LL, Zhang XB (2012) Adv Funct Mater 22:3699CrossRef
    8.Yoo E, Zhou HS (2014) RSC Adv 4:13119CrossRef
    9.Ren XD, Zhu JZ, Du FM, Liu JJ, Zhang WQ (2014) J Phys Chem C 118:22412CrossRef
    10.Wang S, Dong SM, Wang J, Zhang LX, Han PX, Zhang CJ, Wang XG, Zhang KJ, Lan ZG, Cui GL (2012) J Mater Chem 22:21051CrossRef
    11.Li YL, Wang JJ, Li XF, Geng DS, Banis MN, Li RY, Sun XL (2012) Electrochem Commun 18:12CrossRef
    12.Lin ZY, Waller GH, Liu Y, Liu ML, Wong CP (2013) Carbon 53:130CrossRef
    13.Li Q, Cao RG, Cho J, Wu G (2014) PCCP 16:13568CrossRef
    14.Debart A, Bao J, Armstrong G, Bruce PG (2007) J Power Sources 174:1177CrossRef
    15.Lu YC, Xu ZC, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) J Am Chem Soc 132:12170CrossRef
    16.Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) Electrochem Solid State Lett 13:A69CrossRef
    17.Choi R, Jung J, Kim G, Song K, Kim YI, Jung SC, Han YK, Song H, Kang YM (2014) Energy Environ Sci 7:1362CrossRef
    18.Su DW, Kim HS, Kim WS, Wang GX (2013) J Power Sources 244:488CrossRef
    19.Wang YG, Zhou HS (2010) J Power Sources 195:358CrossRef
    20.Cheng H, Scott K (2010) J Power Sources 195:1370CrossRef
    21.Debart A, Paterson AJ, Bao J, Bruce PG (2008) Angewandte Chemie-Int Edn 47:4521CrossRef
    22.Minowa H, Hayashi M, Hayashi K, Kobayashi R, Takahashi K (2013) J Power Sources 244:17CrossRef
    23.Chen Y, Zhang Q, Zhang Z, Zhou X, Zhong Y, Yang M, Xie Z, Wei J, Zhou Z (2015) J Mater Chem A 3:17874CrossRef
    24.Zhang Z, Bao J, He C, Chen Y, Wei J, Zhou Z (2014) Adv Funct Mater 24:6826CrossRef
    25.Jing Y, Zhou Z (2015) ACS Catal 5:4309CrossRef
    26.Wei DC, Liu YQ, Wang Y, Zhang HL, Huang LP, Yu G (2009) Nano Lett 9:1752CrossRef
    27.Guo BD, Liu QA, Chen ED, Zhu HW, Fang LA, Gong JR (2010) Nano Lett 10:4975CrossRef
    28.Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350CrossRef
    29.Lin YC, Lin CY, Chiu PW (2010) Appl Phys Lett 96:133110CrossRef
    30.Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRef
    31.Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15CrossRef
    32.Blochl PE (1994) Phys Rev B 50:17953CrossRef
    33.Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRef
    34.Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533CrossRef
    35.Park H, Noh SH, Lee JH, Lee WJ, Jaung JY, Lee SG, Han TH (2015) Sci Rep 5:14163CrossRef
    36.Koh W, Lee JH, Lee SG, Choi JI, Jang SS (2015) RSC Adv 5:32819CrossRef
    37.Moon HS, Lee JH, Kwon S, Kim IT, Lee SG (2015) Carbon Lett 16:116CrossRef
    38.Koh W, Choi JI, Lee SG, Lee WR, Jang SS (2011) Carbon 49:286CrossRef
    39.Koh W, Choi JI, Jeong E, Lee SG, Jang SS (2014) Curr Appl Phys 14:1748CrossRef
    40.Kwon S, Lee SG (2015) Carbon Lett 16:198CrossRef
    41.Koh W, Choi JI, Donaher K, Lee SG, Jang SS (2011) ACS Appl Mater Inter 3:1186CrossRef
    42.Koh W, Moon HS, Lee SG, Choi JI, Jang SS (2015) ChemPhysChem 16:789CrossRef
    43.Yu Y-X (2013) PCCP 15:16819CrossRef
    44.Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104CrossRef
    45.Manz TA, Sholl DS (2010) J Chem Theory Comput 6:2455CrossRef
    46.Lee JH, Kang SG, Moon HS, Park H, Kim IT, Lee SG (2015) Appl Surf Sci 351:193CrossRef
    47.Wu DH, Li YF, Zhou Z (2011) Theor Chem Acc 130:209CrossRef
    48.Rani P, Jindal VK (2013) RSC Adv 3:802CrossRef
  • 作者单位:Ji Hye Lee (1)
    Sung Gu Kang (2)
    Il Tae Kim (3)
    Soonchul Kwon (4)
    Inwon Lee (5)
    Seung Geol Lee (1)

    1. Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beon gil, Geumjeong-gu, Busan, 46241, Republic of Korea
    2. Office of Strategic Foresight, Korea Institute of S&T Evaluation and Planning (KISTEP), 68, Mabang-ro, Seocho-gu, Seoul, 06775, Republic of Korea
    3. Department of Chemical and Biological Engineering, Gachon University, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea
    4. School of Urban, Architecture and Civil Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
    5. Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
We utilized density functional theory (DFT) study to understand the adsorption mechanism of lithium oxides (LixO2) onto N-doped graphene during oxygen reduction reaction (ORR) for lithium–air batteries. We systematically proposed two possible ORR pathways and examined various adsorption configurations in each system, including for the O2 and Li ORR reactants and the LiO2 and Li2O2 ORR products. The doping of the N atom into graphene was calculated to enhance the adsorption of O2, but to attenuate the adsorption of Li, because of the repulsion between the electron-rich N-doped graphene and the electron-donating Li atom, and the attraction of this N-doped graphene for electronegative O2. Nevertheless, since the adsorption of Li onto N-doped graphene (−1.001 to −0.503 eV) was still stronger than the adsorption of O2 (−0.280 to −0.215 eV), Li should bind N-doped graphene first. Moreover, N-doped graphene was calculated to bind LiO2 (−0.588 eV) more strongly than was pristine graphene (−0.450 eV). Additionally, the Li2O2 configuration that yielded the most stable adsorption on N-doped graphene was calculated to yield an adsorption energy of −0.642 eV, which is more favorable than that for pristine graphene (−0.630 eV). Overall, N-doped graphene was found to strengthen the adsorption of lithium oxides (LixO2) and increase charge transfer to substantial levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700