Clinical significance of co-expression of CD21 and LFA-1 in B-cell lymphoma
详细信息    查看全文
  • 作者:Kazushi Tanimoto (1)
    Yoshihiro Yakushijin (2)
    Hiroshi Fujiwara (1)
    Masaki Otsuka (1)
    Koichi Ohshima (3)
    Atsuro Sugita (4)
    Akira Sakai (5)
    Takaaki Hato (6)
    Hitoshi Hasegawa (1)
    Masaki Yasukawa (1)
  • 关键词:CD21 ; LFA ; 1 ; B ; cell lymphoma
  • 刊名:International Journal of Hematology
  • 出版年:2009
  • 出版时间:May 2009
  • 年:2009
  • 卷:89
  • 期:4
  • 页码:497-507
  • 全文大小:558KB
  • 参考文献:1. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503-1. doi:10.1038/35000501 . CrossRef
    2. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937-7. doi:10.1056/NEJMoa012914 . CrossRef
    3. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68-4. doi:10.1038/nm0102-68 . CrossRef
    4. Monti S, Savage KJ, Kutok JL, Feuerhake F, Kurtin P, Mihm M, et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood. 2005;105:1851-1. doi:10.1182/blood-2004-07-2947 . CrossRef
    5. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235-2. doi:10.1056/NEJMoa011795 . CrossRef
    6. Pfreundschuh M, Trümper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379-1. doi:10.1016/S1470-2045(06)70664-7 . CrossRef
    7. Otsuka M, Yakushijin Y, Hamada M, Hato T, Yasukawa M, Fujita S. Role of CD21 antigen in diffuse large B-cell lymphoma and its clinical significance. Br J Haematol. 2004;127:416-4. doi:10.1111/j.1365-2141.2004.05226.x . CrossRef
    8. Ogawa S, Yamaguchi M, Oka K, Taniguchi M, Ito M, Nishii K, et al. CD21S antigen expression in tumour cells of diffuse large B-cell lymphomas is an independent prognostic factor indicating better overall survival. Br J Haematol. 2004;125:180-. doi:10.1111/j.1365-2141.2004.04900.x . CrossRef
    9. Cooper NR, Moore MD, Nemerow GR. Immunobiology of CR2, the B lymphocyte receptor for Epstein-Barr virus and the C3d complement fragment. Annu Rev Immunol. 1988;6:85-13.
    10. Fearon DT, Carroll MC. Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 2000;18:393-22. doi:10.1146/annurev.immunol.18.1.393 . CrossRef
    11. Tedder TF, Clement LT, Cooper MD. Expression of C3d receptors during human B cell differentiation: immunofluorescence analysis with the HB-5 monoclonal antibody. J Immunol. 1984;133:678-3.
    12. Makar KW, Pham CT, Dehoff MH, O’Connor SM, Jacobi SM, Holers VM. An intronic silencer regulates B lymphocyte cell- and stage-specific expression of the human complement receptor type 2 (CR2, CD21) gene. J Immunol. 1998;160:1268-8.
    13. Matsumoto AK, Martin DR, Carter RH, Klickstein LB, Ahearn JM, Fearon DT. Functional dissection of the CD21/CD19/TAPA-1/Leu-13 complex of B lymphocytes. J Exp Med. 1993;178:1407-7. doi:10.1084/jem.178.4.1407 . CrossRef
    14. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA. 1984;81:4510-. doi:10.1073/pnas.81.14.4510 . CrossRef
    15. Frade R, Barel M, Ehlin-Henriksson B, Klein G. gp140, the C3d receptor of human B lymphocytes, is also the Epstein-Barr virus receptor. Proc Natl Acad Sci USA. 1985;82:1490-. doi:10.1073/pnas.82.5.1490 . CrossRef
    16. Croix DA, Ahearn JM, Rosengard AM, Han S, Kelsoe G, Ma M, et al. Antibody response to a T-dependent antigen requires B cell expression of complement receptors. J Exp Med. 1996;183:1857-4. doi:10.1084/jem.183.4.1857 . CrossRef
    17. Birrell L, Kulik L, Morgan BP, Holers VM, Marchbank KJ. B cells from mice prematurely expressing human complement receptor type 2 are unresponsive to T-dependent antigens. J Immunol. 2005;174:6974-2.
    18. Phan TG, Gardam S, Basten A, Brink R. Altered migration, recruitment, and somatic hypermutation in the early response of marginal zone B cells to T cell-dependent antigen. J Immunol. 2005;174:4567-8.
    19. Bj?rck P, Elenstr?m-Magnusson C, Rosén A, Severinson E, Paulie S. CD23 and CD21 function as adhesion molecules in homotypic aggregation of human B lymphocytes. Eur J Immunol. 1993;23:1771-. doi:10.1002/eji.1830230806 . CrossRef
    20. Barel M, Charriaut C, Frade R. Isolation and characterization of a C3b receptor-like molecule from membranes of a human B lymphoblastoid cell line (Raji). FEBS Lett. 1981;136:111-. doi:10.1016/0014-5793(81)81225-2 . CrossRef
    21. Robichon A, Sreedharan SP, Yang J, Shames RS, Gronroos EC, Cheng PP, et al. Induction of aggregation of Raji human B-lymphoblastic cells by vasoactive intestinal peptide. Immunology. 1993;79:574-.
    22. Kaleem Z, White G, Vollmer RT. Critical analysis and diagnostic usefulness of limited immunophenotyping of B-cell non-Hodgkin lymphomas by flow cytometry. Am J Clin Pathol. 2001;115:136-2. doi:10.1309/8B6V-16DJ-UMTB-6LVX . CrossRef
    23. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99:1023-. doi:10.1182/blood.V99.3.1023 . CrossRef
    24. Orchard JA, Ibbotson RE, Davis Z, Wiestner A, Rosenwald A, Thomas PW, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363:105-1. doi:10.1016/S0140-6736(03)15260-9 . CrossRef
    25. Terol MJ, López-Guillermo A, Bosch F, Villamor N, Cid MC, Campo E, et al. Expression of beta-integrin adhesion molecules in non-Hodgkin’s lymphoma: correlation with clinical and evolutive features. J Clin Oncol. 1999;17:1869-5.
    26. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425-4. doi:10.1038/346425a0 . CrossRef
    27. Southcott MJ, Tanner MJ, Anstee DJ. The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood. 1999;93:4425-5.
    28. Tian L, Kilgannon P, Yoshihara Y, Mori K, Gallatin WM, Carpén O, et al. Binding of T lymphocytes to hippocampal neurons through ICAM-5 (telencephalin) and characterization of its interaction with the leukocyte integrin CD11a/CD18. Eur J Immunol. 2000;30:810-. doi:10.1002/1521-4141(200003)30:3<810::AID-IMMU810>3.0.CO;2-X . CrossRef
    29. Ihanus E, Uotila LM, Toivanen A, Varis M, Gahmberg CG. Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4. Blood. 2007;109:802-0. doi:10.1182/blood-2006-04-014878 . CrossRef
    30. Tian L, Lappalainen J, Autero M, H?nninen S, Rauvala H, Gahmberg CG. Shedded neuronal ICAM-5 suppresses T-cell activation. Blood. 2008;111:3615-5. doi:10.1182/blood-2007-09-111179 . CrossRef
    31. Terol MJ, López-Guillermo A, Bosch F, Villamor N, Cid MC, Rozman C, et al. Expression of the adhesion molecule ICAM-1 in non-Hodgkin’s lymphoma: relationship with tumor dissemination and prognostic importance. J Clin Oncol. 1998;16:35-0.
    32. Pals ST, de Gorter DJ, Spaargaren M. Lymphoma dissemination: the other face of lymphocyte homing. Blood. 2007;110:3102-1. doi:10.1182/blood-2007-05-075176 . CrossRef
    33. Jalkanen S, Aho R, Kallajoki M, Ekfors T, Nortamo P, Gahmberg C, et al. Lymphocyte homing receptors and adhesion molecules in intravascular malignant lymphomatosis. Int J Cancer. 1989;44:777-2. doi:10.1002/ijc.2910440505 . CrossRef
    34. Bechter OE, Eisterer W, Dirnhofer S, Pall G, Kühr T, Stauder R, et al. Expression of LFA-1 identifies different prognostic subgroups in patients with advanced follicle center lymphoma (FCL). Leuk Res. 1999;23:483-. doi:10.1016/S0145-2126(99)00036-3 . CrossRef
    35. Braziel RM, Arber DA, Slovak ML, Gulley ML, Spier C, Kjeldsberg C, et al. The Burkitt-like lymphomas: a Southwest Oncology Group study delineating phenotypic, genotypic, and clinical features. Blood. 2001;97:3713-0. doi:10.1182/blood.V97.12.3713 . CrossRef
    36. Domínguez-Soto A, Relloso M, Vega MA, Corbí AL, Puig-Kr?ger A. RUNX3 regulates the activity of the CD11a and CD49d integrin gene promoters. Immunobiology. 2005;210:133-. doi:10.1016/j.imbio.2005.05.008 . CrossRef
    37. Puig-Kr?ger A, Sanchez-Elsner T, Ruiz N, Andreu EJ, Prosper F, Jensen UB, et al. RUNX/AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through overlapping regulatory elements. Blood. 2003;102:3252-1. doi:10.1182/blood-2003-02-0618 . CrossRef
    38. Spender LC, Cornish GH, Sullivan A, Farrell PJ. Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol. 2002;76:4919-7. doi:10.1128/JVI.76.10.4919-4927.2002 . CrossRef
    39. Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med. 1991;173:1297-04. doi:10.1084/jem.173.6.1297 . CrossRef
    40. Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA, et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994;152:3760-.
    41. Carrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20:589-9. doi:10.1016/S1074-7613(04)00105-0 . CrossRef
    42. Nadler LM, Stashenko P, Hardy R, van Agthoven A, Terhorst C, Schlossman SF. Characterization of a human B cell-specific antigen (B2) distinct from B1. J Immunol. 1981;126:1941-.
    43. Schuurman HJ, Huppes W, Verdonck LF, Van Baarlen J, Van Unnik JA. Immunophenotyping of non-Hodgkin’s lymphoma. Correlation with relapse-free survival. Am J Pathol. 1988;131:102-1.
    44. Scoazec JY, Berger F, Magaud JP, Brochier J, Coiffier B, Bryon PA. The dendritic reticulum cell pattern in B cell lymphomas of the small cleaved, mixed, and large cell types: an immunohistochemical study of 48 cases. Hum Pathol. 1989;20:124-1. doi:10.1016/0046-8177(89)90176-7 . CrossRef
    45. Yamaguchi M, Seto M, Okamoto M, Ichinohasama R, Nakamura N, Yoshino T, et al. De novo CD5+ diffuse large B-cell lymphoma: a clinicopathologic study of 109 patients. Blood. 2002;99:815-1. doi:10.1182/blood.V99.3.815 . CrossRef
    46. Miyazaki K, Yamaguchi M, Suguro M, Choi W, Ji Y, Xiao L, et al. Gene expression profiling of diffuse large B-cell lymphoma supervised by CD21 expression. Br J Haematol. 2008;142:562-0. doi:10.1111/j.1365-2141.2008.07218.x . CrossRef
  • 作者单位:Kazushi Tanimoto (1)
    Yoshihiro Yakushijin (2)
    Hiroshi Fujiwara (1)
    Masaki Otsuka (1)
    Koichi Ohshima (3)
    Atsuro Sugita (4)
    Akira Sakai (5)
    Takaaki Hato (6)
    Hitoshi Hasegawa (1)
    Masaki Yasukawa (1)

    1. Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
    2. Cancer Center, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
    3. Department of Pathology, Kurume University School of Medicine, Fukuoka, Japan
    4. Department of Pathology, Ehime University Graduate School of Medicine, Ehime, Japan
    5. Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
    6. Division of Blood Transfusion and Cell Therapy, Ehime University Graduate School of Medicine, Ehime, Japan
文摘
We previously reported that the prognosis of CD21-positive diffuse large B-cell lymphoma (DLBCL) is significantly favorable to that of CD21-negative DLBCL (Otsuka et al. in Br J Haematol 127:416-24, 2004). In this study, we attempted to clarify the biological significance of CD21 expression in B-cell lymphoma (BCL) by performing in vitro experiments using CD21 transfection into a CD21-negative lymphoma cell line and analyzing clinical data from lymphoma samples. Established clones of CD21 transfectants showed homotypic aggregation in suspension culture. Analysis of integrin expression revealed that LFA-1 appeared to be expressed on CD21 transfectants, and the cell aggregation was abrogated by anti-LFA-1 antibody. The CD21 transfectants could adhere to plastic plates coated with ICAM-1. Moreover, flow cytometry and/or immunohistochemical analyses of clinical BCL samples (n?=?29) revealed positive for CD21 in all cases; LFA-1 was also expressed without exception. All BCL cells isolated from cavity fluids (n?=?10) failed to express both CD21 and LFA-1. These data suggest that CD21 is tightly related to LFA-1 expression in BCL and the absence of CD21/LFA-1 expression is associated with pleural/peritoneal fluid involvement by BCL, a potential indicator of disease progression of BCL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700