Seismic Wavefields in the Deep Seafloor Area from a Submarine Landslide Source
详细信息    查看全文
  • 作者:Takeshi Nakamura (1)
    Hiroshi Takenaka (2) (4)
    Taro Okamoto (3)
    Yoshiyuki Kaneda (1)
  • 关键词:DONET ; landslide ; seismic wave propagation ; finite difference method ; seafloor observation ; tonankai area
  • 刊名:Pure and Applied Geophysics
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:171
  • 期:7
  • 页码:1153-1167
  • 全文大小:3,832 KB
  • 参考文献:1. Alford, R. M., K. R. Kelly, and D. M. Boore (1974). / Accuracy of finite-difference modeling of acoustic-wave equation, Geophysics / 39, 834-42.
    2. Baba, T., H. Matsumoto, K. Kashiwase, T. Hyakudome, Y. Kaneda, and M. Sano (2012). Micro-bathymetric evidence for the effect of submarine mass movement on tsunami generation during the 2009 Suruga Bay earthquake, Japan, in / Advances in Natural and Technological Hazards Research 31, Springer, Dordrecht, 485-95.
    3. Bondevik, S., F. L?vholt, C. Harbitz, J. Mangerud, A. Dawson, and J. I. Svendsen (2005). / The Storegga Slide tsunami-comparing field observations with numerical simulations, Mar. Petrol. Geol. / 22, 195-08.
    4. Brocher, T. A . (2005). / Empirical relations between elastic wavespeeds and density in the earth’s crust, Bull. Seism. Soc. Am. / 95, 2081-092.
    5. Chen, C. H., W. A. Chao, Y. M. Wu, L. Zhao, Y. G. Chen, W. Y. Ho, T. L. Lin, K. H. Kuo , and J. M. Chang (2013). / A seismological study of landquakes using a real-time broad-band seismic network, Geophys. J. Int. / 194, 885-98.
    6. Chigira, M., Y. Matsushi, C. Y. Tsou, N. Hiraishi, M. Matsuzawa , and S. Matsuura (2012). / Deep-seated catastrophic landslides induced by Typhoon 1112 Talas, Annu. Disas. Prev. Res. Inst., Kyoto Univ. / 55, 193-11.
    7. Citak, S. O., T. Nakamura, A. Nakanishi, Y. Yamamoto, M. Ohori, T. Baba, and Y. Kaneda (2012). / An updated model of three-dimensional seismic structure in the source area of the Tokai-Tonankai-Nankai earthquake, Abstr. Asia Oceania Geosci. Soc / . 2012, Singapore, 13-7 August 2012, OS06-A015.
    8. Dahlen, F. A . (1993). / Single-force representation of shallow landslide sources, Bull. Seism. Soc. Am. / 83, 130-43.
    9. Drossaert, F. H. and A. Giannopoulos (2007 / ). Complex frequency shifted convolution PML for FDTD modelling of elastic waves, Wave Motion / 44, 593-04.
    10. Eissler, H. K. and H. Kanamori (1987). / A single force model for the 1975 Kalapana, Hawaii, earthquake, J. Geophys. Res. / 92, 4827-836.
    11. Fujiwara, T., S. Kodaira, T. No, Y. Kaiho, N. Takahashi, and Y. Kaneda (2011). / The 2011 Tohoku-Oki earthquake: Displacement reaching the trench axis, Science / 334, 1240.
    12. Fukao, Y . (1995). / Single-force representation of earthquakes due to landslides or the collapse of caverns, Geophys.J. Int. / 122, 243-48.
    13. Guzzetti, F., B. D. Malamud, D. L. Turcotte, and P. Reichenbach (2002). / Power-law correlations of landslide areas in central Italy, Earth Planet. Sci. Lett. / 195, 169-83.
    14. Hasegawa, H. S. and H. Kanamori (1987). / Source mechanism of the magnitude 7.2 Grand-Banks Earthquake of November 1929: Double couple or submarine landslide, Bull. Seism. Soc. Am. / 77, 1984-004.
    15. Heezen B. C . and M. Ewing (1952). / Turbidity currents and submarine slumps, and the 1929 Grand Banks Earthquake, Am. J. Sci. / 250, 849-73.
    16. Heinrich, P., A. Piatanesi, and H. Hébert (2001). / Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event, Geophys. J. Int. / 145, 97-11.
    17. Kanamori, H . (1972). / Mechanism of tsunami earthquakes, Phys. Earth Planet. Inter. / 6, 346-59.
    18. Kanamori, H. and J. W. Given (1982). / Analysis of long-period seismic-waves excited by the May 18, 1980, eruption of Mount St Helens—A terrestrial monopole, J. Geophys. Res. / 87, 5422-432.
    19. Kaneda Y., K. Kawaguchi, E. Araki, H. Matsumoto, A. Sakuma, T. Nakamura, S. Kamiya, K. Ariyoshi, T. Baba, M. Ohori, and T. Hori (2010). / Development of real time monitoring system (DONET) for understanding mega thrust, Abstr. Japan Geoscience Union Meet. / 2010, Makuhari, 23-8 May 2010, SSS027-P25.
    20. Kawaguchi, K., E. Araki, and Y. Kaneda (2011). / Establishment of a method for real-time and long-term seafloor monitoring, J. Adv. Mar. Sci. Tech. Soc. / 17, 125-35 (in Japanese).
    21. Kawamura, K., T. Sasaki, T. Kanamatsu, A. Sakaguchi, and Y. Ogawa (2012). / Large submarine landslides in the Japan Trench: A new scenario for additional tsunami generation, Geophys. Res. Lett. / 39, L05308, doi:10.1029/2012GL050661 .
    22. La Rocca, M., D. Galluzzo, G. Saccorotti, S. Tinti, G. B. Cimini, and E. Del Pezzo (2004). / Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy, Bull. Seism. Soc. Am. / 94, 1850-867.
    23. Lin, C. H., H. Kumagai, M. Ando, and T. C. Shin (2010). / Detection of landslides and submarine slumps using broadband seismic networks, Geophys. Res. Lett. / 37, L22309, doi:10.1029/2010GL044685 .
    24. Moczo, P., J. Kristek, and L. Halada (2000). / 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion, Bull. Seism. Soc. Am. / 90, 587-03.
    25. Nakamura, T., H. Takenaka, T. Okamoto, and Y. Kaneda (2011). / A study of the finite difference solution for 3D seismic wavefields near a fluid–solid interface, Zisin 2 (J. Seism. Soc. Jpn.) / 63, 187-94 (in Japanese).
    26. Nakamura, T., H. Takenaka, T. Okamoto, and Y. Kaneda (2012). / FDM simulation of seismic-wave propagation for an aftershock of the 2009 Suruga Bay earthquake: Effects of ocean-bottom topography and seawater layer, Bull. Seism. Soc. Am. / 102, 2420-435.
    27. Nakanishi, A., N. Takahashi, J. O. Park, S. Miura, S. Kodaira, Y. Kaneda, N. Hirata, T. Iwasaki, and M. Nakamura (2002). / Crustal structure across the coseismic rupture zone of the 1944 Tonankai earthquake, the central Nankai Trough seismogenic zone, J. Geophys. Res. / 107, doi:10.1029/2001JB000424 .
    28. Nakano, M., T. Tonegawa, and Y. Kaneda (2012). / Orientations of DONET seismometers estimated from seismic waveforms, JAMSTEC Rep. Res. Dev. / 15, 77-9 (in Japanese with English abstract).
    29. Okamoto, T . and H. Takenaka (2005). / Fluid–solid boundary implementation in the velocity-stress finite-difference method, Zisin 2 (J. Seism. Soc. Jpn.) / 57, 355-64 (in Japanese with English abstract).
    30. Pekeris, C. L . (1948). Theory of propagation of explosive sound in shallow water, in / Propagation of Sound in the Ocean, Geol. Soc. Am., New York.
    31. Press, F, M. Ewing, and I. Tolstoy (1950). / The Airy phase of shallow-focus submarine earthquakes, Bull. Seism. Soc. Am. / 40, 111-48.
    32. Shiomi, K., H. Sato, K. Obara, and M. Ohtake (2004). / Configuration of subducting Philippine Sea plate beneath southwest Japan revealed from receiver function analysis based on the multivariate autoregressive model, J. Geophys. Res. / 109, B04308, doi:10.1029/2003JB002774 .
    33. Sugioka, H., T. Okamoto, T. Nakamura, Y. Ishihara, A. Ito, K. Obana, M. Kinoshita, K. Nakahigashi, M. Shinohara, and Y. Fukao (2012). / Tsunamigenic potential of the shallow subduction plate boundary inferred from slow seismic slip, Nature Geosci. / 5, 414-18.
    34. Takenaka, H ., T. Nakamura, T. Okamoto, and Y. Kaneda (2009). A unified approach implementing land and ocean-bottom topographies in the staggered-grid finite-difference method for seismic wave modeling, / Proc. 9th SEGJ Int. Symp., Sapporo, 12-4 October 2009, doi:10.1190/SEGJ092009-001.13 .
    35. Tappin, D. R., P. Watts, G. M. McMurtry, Y. Lafoy, and T. Matsumoto (2001). / The Sissano, Papua New Guinea tsunami of July 1998 –offshore evidence on the source mechanism, Marine Geology / 175, 1-3.
    36. Ueno, H., S. Hatakeyama, T. Aketagawa, J. Funasaki, and N. Hamada (2002). / Improvement of hypocenter determination procedures in the Japan Meteorological Agency, Quart. J. Seism. / 65, 123-34 (in Japanese with English abstract).
    37. Ward, S. N. (2001). / Landslide tsunami, J. Geophys. Res. / 106, 11201-1215.
    38. Webb, S. C. (1998). / Broadband seismology and noise under the ocean, Rev. Geophys. / 36, 105-42.
    39. Wessel, P . and W. H. F. Smith (1998). / New, improved version of Generic Mapping Tools released, Eos Trans. AGU / 79, 579.
    40. Yamada, M., Y. Matsushi, M. Chigira, and J. Mori (2012). / Seismic recordings of landslides caused by Typhoon Talas (2011), Japan, Geophys. Res. Lett. / 39, L13301, doi:10.1029/2012GL052174 .
    41. Yamada, M., H. Kumagai, Y. Matsushi , and T. Matsuzawa (2013). / Dynamic landslide processes revealed by broadband seismic records, Geophys. Res. Lett. / 40, 2998-002, doi:10.1002/GRL.50437 .
    42. Yang, Z., A. F. Sheehan, J. A. Collins, and G. Laske (2012). / The character of seafloor ambient noise recorded offshore New Zealand: Results from the MOANA ocean bottom seismic experiment, Geochem. Geophys. Geosys. / 13, Q10011, doi:10.1029/2012GC004201 .
  • 作者单位:Takeshi Nakamura (1)
    Hiroshi Takenaka (2) (4)
    Taro Okamoto (3)
    Yoshiyuki Kaneda (1)

    1. Earthquake and Tsunami Research Project for Disaster Prevention, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan
    2. Department of Earth and Planetary Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, 812-8581, Japan
    4. Department of Earth Sciences, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
    3. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
  • ISSN:1420-9136
文摘
We use the finite difference method to simulate seismic wavefields at broadband land and seafloor stations for a given terrestrial landslide source, where the seafloor stations are located at water depths of 1,900-,300?m. Our simulation results for the landslide source explain observations well at the seafloor stations for a frequency range of 0.05-.1?Hz. Assuming the epicenter to be located in the vicinity of a large submarine slump, we also model wavefields at the stations for a submarine landslide source. We detect propagation of the Airy phase with an apparent velocity of 0.7?km/s in association with the seawater layer and an accretionary prism for the vertical component of waveforms at the seafloor stations. This later phase is not detected when the structural model does not consider seawater. For the model incorporating the seawater, the amplitude of the vertical component at seafloor stations can be up to four times that for the model that excludes seawater; we attribute this to the effects of the seawater layer on the wavefields. We also find that the amplification of the waveform depends not only on the presence of the seawater layer but also on the thickness of the accretionary prism, indicating low amplitudes at the land stations and at seafloor stations located near the trough but high amplitudes at other stations, particularly those located above the thick prism off the trough. Ignoring these characteristic structures in the oceanic area and simply calculating the wavefields using the same structural model used for land areas would result in erroneous estimates of the size of the submarine landslide and the mechanisms underlying its generation. Our results highlight the importance of adopting a structural model that incorporates the 3D accretionary prism and seawater layer into the simulation in order to precisely evaluate seismic wavefields in seafloor areas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700