Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice
详细信息    查看全文
  • 作者:Wataru Nemoto (6)
    Osamu Nakagawasai (6)
    Fukie Yaoita (6)
    Syu-Ichi Kanno (7)
    Shin Yomogida (7)
    Masaaki Ishikawa (7)
    Takeshi Tadano (8)
    Koichi Tan-No (6)
  • 刊名:Molecular Pain
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:9
  • 期:1
  • 全文大小:607KB
  • 参考文献:1. Paul M, Poyan Mehr A, Kreutz R: Physiology of local renin-angiotensin systems. / Physiol Rev 2006, 86:747. CrossRef
    2. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T: International union of pharmacology. XXIII. The angiotensin II receptors. / Pharmacol Rev 2000, 52:415-72.
    3. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD: Angiotensin II receptors and angiotensin II receptor antagonists. / Pharmacol Rev 1993, 45:205-51.
    4. Bader M: Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. / Annu Rev Pharmacol Toxicol 2010, 50:439-65. CrossRef
    5. Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH: Identification of functional angiotensin II receptors on rat cardiac fibroblasts. / Circulation 1993, 88:2849-861. CrossRef
    6. Nguyen Dinh Cat A, Touyz RM: A new look at the renin-angiotensin system--focusing on the vascular system. / Peptides 2011, 32:2141-150. CrossRef
    7. Zhuo JL, Li XC: New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. / Peptides 2011, 32:1551-565. CrossRef
    8. Leung PS: Pancreatic RAS. / Adv Exp Med Biol 2010, 690:89-05. CrossRef
    9. Wright JW, Harding JW: Brain renin-angiotensin–a new look at an old system. / Prog Neurobiol 2011, 95:49-7. CrossRef
    10. Thatcher S, Yiannikouris F, Gupte M, Cassis L: The adipose renin-angiotensin system: role in cardiovascular disease. / Mol Cell Endocrinol 2009, 302:111-17. CrossRef
    11. Marques-Lopes J, Pinto M, Pinho D, Morato M, Patinha D, Albino-Teixeira A, Tavares I: Microinjection of angiotensin II in the caudal ventrolateral medulla induces hyperalgesia. / Neuroscience 2009, 158:1301-310. CrossRef
    12. Prado WA, Pelegrini-da-Silva A, Martins AR: Microinjection of renin-angiotensin system peptides in discrete sites within the rat periaqueductal gray matter elicits antinociception. / Brain Res 2003, 972:207-15. CrossRef
    13. Pelegrini-da-Silva A, Martins AR, Prado WA: A new role for the renin-angiotensin system in the rat periaqueductal gray matter: angiotensin receptor-mediated modulation of nociception. / Neuroscience 2005, 132:453-63. CrossRef
    14. Yien HW, Chan JY, Tsai HF, Lee TY, Chan SH: Participation of nucleus reticularis gigantocellularis in the antinociceptive effect of angiotensin III in the rat. / Neurosci Lett 1993, 159:9-2. CrossRef
    15. Gu J, Liu X, Wang QX, Tan HW, Guo M, Jiang WF, Zhou L: Angiotensin II increases CTGF expression via MAPKs/TGF-beta1/TRAF6 pathway in atrial fibroblasts. / Exp Cell Res 2012, 318:2105-115. CrossRef
    16. Yang L, Du C, Chen T, Li S, Nie W, Zhu W, Fan F, Zhu J, Yan H: Distinct MAPK pathways are involved in IL-23 production in dendritic cells cocultured with NK cells in the absence or presence of angiotensin II. / Mol Immunol 2012, 51:51-6. CrossRef
    17. Chan SH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JY: NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. / Circ Res 2005, 97:772-80. CrossRef
    18. Ji RR, Baba H, Brenner GJ, Woolf CJ: Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. / Nat Neurosci 1999, 2:1114-119. CrossRef
    19. Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, Tachibana T, Liu Y, Noguchi K: Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. / J Neurosci 2002, 22:7737-745.
    20. Ma W, Quirion R: Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. / Pain 2002, 99:175-84. CrossRef
    21. Galan A, Cervero F, Laird JM: Extracellular signaling-regulated kinase-1 and ? (ERK 1/2) mediate referred hyperalgesia in a murine model of visceral pain. / Brain Res Mol Brain Res 2003, 116:126-34. CrossRef
    22. Boyle DL, Jones TL, Hammaker D, Svensson CI, Rosengren S, Albani S, Sorkin L, Firestein GS: Regulation of peripheral inflammation by spinal p38 MAP kinase in rats. / PLoS Med 2006, 3:e338. CrossRef
    23. Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C, Sakurada T, Bakalkin G, Terenius L, Kisara K: Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism. / Brain Res 2002, 952:7-4. CrossRef
    24. Tan-No K, Takahashi H, Nakagawasai O, Niijima F, Sato T, Satoh S, Sakurada S, Marinova Z, Yakovleva T, Bakalkin G, / et al.: Pronociceptive role of dynorphins in uninjured animals: N-ethylmaleimide-induced nociceptive behavior mediated through inhibition of dynorphin degradation. / Pain 2005, 113:301-09. CrossRef
    25. Tan-No K, Taira A, Wako K, Niijima F, Nakagawasai O, Tadano T, Sakurada C, Sakurada T, Kisara K: Intrathecally administered spermine produces the scratching, biting and licking behaviour in mice. / Pain 2000, 86:55-1. CrossRef
    26. Tan-No K, Esashi A, Nakagawasai O, Niijima F, Furuta S, Sato T, Satoh S, Yasuhara H, Tadano T: Intrathecally administered D-cycloserine produces nociceptive behavior through the activation of N-methyl-D-aspartate receptor ion-channel complex acting on the glycine recognition site. / J Pharmacol Sci 2007, 104:39-5. CrossRef
    27. Tan-No K, Takahashi K, Shimoda M, Sugawara M, Nakagawasai O, Niijima F, Sato T, Satoh S, Tadano T: S-(+)-fenfluramine-induced nociceptive behavior in mice: Involvement of interactions between spinal serotonin and substance P systems. / Neuropeptides 2007, 41:33-8. CrossRef
    28. Burkhalter J, Felix D, Imboden H: A new angiotensinergic system in the CNS of the rat. / Regul Pept 2001, 99:93-01. CrossRef
    29. Wu W, Zhang Y, Ballew JR, Fink G, Wang DH: Development of hypertension induced by subpressor infusion of angiotensin II: role of sensory nerves. / Hypertension 2000, 36:549-52. CrossRef
    30. Gebhart GF: Descending modulation of pain. / Neurosci Biobehav Rev 2004, 27:729-37. CrossRef
    31. Georgieva D, Georgiev V: The role of angiotensin II and of its receptor subtypes in the acetic acid-induced abdominal constriction test. / Pharmacol Biochem Behav 1999, 62:229-32. CrossRef
    32. Raghavendra V, Chopra K, Kulkarni SK: Brain renin angiotensin system (RAS) in stress-induced analgesia and impaired retention. / Peptides 1999, 20:335-42. CrossRef
    33. Patil J, Schwab A, Nussberger J, Schaffner T, Saavedra JM, Imboden H: Intraneuronal angiotensinergic system in rat and human dorsal root ganglia. / Regul Pept 2010, 162:90-8. CrossRef
    34. Takai S, Song K, Tanaka T, Okunishi H, Miyazaki M: Antinociceptive effects of angiotensin-converting enzyme inhibitors and an angiotensin II receptor antagonist in mice. / Life Sci 1996, 59:PL331-PL336. CrossRef
    35. Pavel J, Tang H, Brimijoin S, Moughamian A, Nishioku T, Benicky J, Saavedra JM: Expression and transport of Angiotensin II AT1 receptors in spinal cord, dorsal root ganglia and sciatic nerve of the rat. / Brain Res 2008, 1246:111-22. CrossRef
    36. Pelegrini-da-Silva A, Rosa E, Guethe LM, Juliano MA, Prado WA, Martins AR: Angiotensin III modulates the nociceptive control mediated by the periaqueductal gray matter. / Neuroscience 2009, 164:1263-273. CrossRef
    37. Sung CS, Wen ZH, Chang WK, Chan KH, Ho ST, Tsai SK, Chang YC, Wong CS: Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. / J Neurochem 2005, 94:742-52. CrossRef
    38. Ji RR, Gereau RW, Malcangio M, Strichartz GR: MAP kinase and pain. / Brain Res Rev 2009, 60:135-48. CrossRef
    39. Enslen H, Raingeaud J, Davis RJ: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. / J Biol Chem 1998, 273:1741-748. CrossRef
    40. Gu YW, Su DS, Tian J, Wang XR: Attenuating phosphorylation of p38 MAPK in the activated microglia: a new mechanism for intrathecal lidocaine reversing tactile allodynia following chronic constriction injury in rats. / Neurosci Lett 2008, 431:129-34. CrossRef
    41. Xu L, Huang Y, Yu X, Yue J, Yang N, Zuo P: The influence of p38 mitogen-activated protein kinase inhibitor on synthesis of inflammatory cytokine tumor necrosis factor alpha in spinal cord of rats with chronic constriction injury. / Anesth Analg 2007, 105:1838-844. CrossRef
    42. Jin SX, Zhuang ZY, Woolf CJ, Ji RR: p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. / J Neurosci 2003, 23:4017-022.
    43. Terayama R, Omura S, Fujisawa N, Yamaai T, Ichikawa H, Sugimoto T: Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury. / Neuroscience 2008, 153:1245-255. CrossRef
    44. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K: Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. / Glia 2004, 45:89-5. CrossRef
    45. Cui XY, Dai Y, Wang SL, Yamanaka H, Kobayashi K, Obata K, Chen J, Noguchi K: Differential activation of p38 and extracellular signal-regulated kinase in spinal cord in a model of bee venom-induced inflammation and hyperalgesia. / Mol Pain 2008, 4:17. CrossRef
    46. Kim SY, Bae JC, Kim JY, Lee HL, Lee KM, Kim DS, Cho HJ: Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. / Neuroreport 2002, 13:2483-486. CrossRef
    47. Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD, Catalano R, Feng Y, Protter AA, Scott B, Yaksh TL: Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. / J Neurochem 2003, 86:1534-544. CrossRef
    48. Sweitzer SM, Peters MC, Ma JY, Kerr I, Mangadu R, Chakravarty S, Dugar S, Medicherla S, Protter AA, Yeomans DC: Peripheral and central p38 MAPK mediates capsaicin-induced hyperalgesia. / Pain 2004, 111:278-85. CrossRef
    49. Svensson CI, Hua XY, Protter AA, Powell HC, Yaksh TL: Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. / Neuroreport 2003, 14:1153-157. CrossRef
    50. Mizushima T, Obata K, Yamanaka H, Dai Y, Fukuoka T, Tokunaga A, Mashimo T, Noguchi K: Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia. / Pain 2005, 113:51-0. CrossRef
    51. Wang BW, Chang H, Kuan P, Shyu KG: Angiotensin II activates myostatin expression in cultured rat neonatal cardiomyocytes via p38 MAP kinase and myocyte enhance factor 2 pathway. / J Endocrinol 2008, 197:85-3. CrossRef
    52. Hylden JL, Wilcox GL: Intrathecal morphine in mice: a new technique. / Eur J Pharmacol 1980, 67:313-16. CrossRef
    53. Nakagawasai O, Hozumi S, Tan-No K, Niijima F, Arai Y, Yasuhara H, Tadano T: Immunohistochemical fluorescence intensity reduction of brain somatostatin in the impairment of learning and memory-related behaviour induced by olfactory bulbectomy. / Behav Brain Res 2003, 142:63-7. CrossRef
  • 作者单位:Wataru Nemoto (6)
    Osamu Nakagawasai (6)
    Fukie Yaoita (6)
    Syu-Ichi Kanno (7)
    Shin Yomogida (7)
    Masaaki Ishikawa (7)
    Takeshi Tadano (8)
    Koichi Tan-No (6)

    6. Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
    7. Department of Clinical Pharmacotherapeutics, Tohoku Pharmaceutical University, Aoba-ku, Sendai, 981-8558, Japan
    8. Laboratory of Environmental and Health Sciences, College of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
文摘
Background It has been demonstrated that angiotensin II (Ang II) participates in either the inhibition or the facilitation of nociceptive transmission depending on the brain area. Neuronal Ang II is locally synthesized not only in the brain, but also in the spinal cord. Though the spinal cord is an important area for the modulation of nociception, the role of spinal Ang II in nociceptive transmission remains unclear. Therefore, in order to elucidate the role of Ang II in nociceptive transmission in the spinal cord, we examined the effect of intrathecal (i.t.) administration of Ang II into mice. Results I.t. administration of Ang II produced a behavioral response in mice mainly consisting of biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by Ang II (3 pmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.1-0.3?mg/kg), suggesting that the behavioral response is related to nociception. The nociceptive behavior was also inhibited dose-dependently by i.t. co-administration of losartan (0.3-3?nmol), an Ang II type 1 (AT1) receptor antagonist, and SB203580 (0.1-1?nmol), a p38 MAPK inhibitor. However, the Ang II type 2 (AT2) receptor antagonist PD123319, the upstream inhibitor of ERK1/2 phosphorylation U0126, and the JNK inhibitor SP600125 had no effect on Ang II-induced nociceptive behavior. Western blot analysis showed that the i.t. injection of Ang II induced phosphorylation of p38 MAPK in the lumbar dorsal spinal cord, which was inhibited by losartan, without affecting ERK1/2 and JNK. Furthermore, we found that AT1 receptor expression was relatively high in the lumbar superficial dorsal horn. Conclusions Our data show that i.t. administration of Ang II induces nociceptive behavior accompanied by the activation of p38 MAPK signaling mediated through AT1 receptors. This observation indicates that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700