Induced pluripotent stem cells in reproductive medicine
详细信息    查看全文
  • 作者:Takeshi Teramura (1) (2)
    John Frampton (3)
  • 关键词:Germ cells ; Induced pluripotent stem cells ; In vitro differentiation ; Pluripotency ; Reprogramming
  • 刊名:Reproductive Medicine and Biology
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:12
  • 期:2
  • 页码:39-46
  • 全文大小:275KB
  • 参考文献:1. Evans M. Discovering pluripotency: 30聽years of mouse embryonic stem cells. Nat Rev Mol Cell Biol. 2011;12:680鈥?.
    2. Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev. 2008;22:1987鈥?7.
    3. Donovan PJ, de Miguel MP. Turning germ cells into stem cells. Curr Opin Genet Dev. 2003;13:463鈥?1.
    4. Aflatoonian B, Moore H. Germ cells from mouse and human embryonic stem cells. Reproduction. 2006;132:699鈥?07.
    5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861鈥?2.
    6. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313鈥?.
    7. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature. 2010;465:175鈥?1.
    8. Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118鈥?2.
    9. Som A, Harder C, Greber B, Siatkowski M, Paudel Y, et al. The PluriNetWork: an electronic representation of the network underlying pluripotency in mouse, and its applications. PLoS ONE. 2010;5:e15165.
    10. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663鈥?6.
    11. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625鈥?5.
    12. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379鈥?1.
    13. Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136:2311鈥?2.
    14. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell. 2009;5:491鈥?03.
    15. Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell. 2008;132:1049鈥?1.
    16. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 2009;28:3157鈥?0.
    17. Laurenti E, Wilson A, Trumpp A. Myc鈥檚 other life: stem cells and beyond. Curr Opin Cell Biol. 2009;21:844鈥?4.
    18. Nakagawa M, Takizawa N, Narita M, Ichisaka T, Yamanaka S. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci USA. 2010;107:14152鈥?.
    19. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101鈥?.
    20. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008;2:151鈥?.
    21. Stadtfeld M, Hochedlinger K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 2010;24:2239鈥?3.
    22. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008;2:230鈥?0.
    23. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917鈥?0.
    24. Heo I, Joo C, Cho J, Ha M, Han J, et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell. 2008;32:276鈥?4.
    25. Viswanathan SR, Daley GQ, Gregory RI. Selective blockade of microRNA processing by Lin28. Science. 2008;320:97鈥?00.
    26. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27:459鈥?1.
    27. Martinez NJ, Gregory RI. MicroRNA gene regulatory pathways in the establishment and maintenance of ESC identity. Cell Stem Cell. 2010;7:31鈥?
    28. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8:376鈥?8.
    29. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8:633鈥?.
    30. Heng JC, Feng B, Han J, Jiang J, Kraus P, et al. The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell. 2010;6:167鈥?4.
    31. Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature. 2011;474:225鈥?.
    32. Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryo during gastrulation. Development. 1990;110:521鈥?.
    33. Ohinata Y, Payer B, O鈥機arroll D, Ancelin K, Ono Y, et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature. 2005;436:207鈥?3.
    34. Vincent SD, Dunn NR, Sciammas R, Shapiro-Shalef M, Davis MM, et al. The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development. 2005;132:1315鈥?5.
    35. Freeman B. The active migration of germ cells in the embryos of mice and men is a myth. Reproduction. 2003;125:635鈥?3.
    36. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development. 2002;129:1807鈥?7.
    37. Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, et al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature. 2008;452:877鈥?1.
    38. Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell. 2007;128:747鈥?2.
    39. Chuva de Sousa Lopes SM, Hayashi K, Shovlin TC, Mifsud W, Surani MA, et al. X chromosome activity in mouse XX primordial germ cells. PLoS Genet. 2008; 4:e30.
    40. McLaren A. Primordial germ cells in the mouse. Dev Biol. 2003;262:1鈥?5.
    41. Eguizabal C, Shovlin TC, Durcova-Hills G, Surani A, McLaren A. Generation of primordial germ cells from pluripotent stem cells. Differentiation. 2009;78:116鈥?3.
    42. Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 1999;13:424鈥?6.
    43. Ying Y, Qi X, Zhao GQ. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc Natl Acad Sci USA. 2001;98:7858鈥?2.
    44. Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev Biol. 2001;232:484鈥?2.
    45. Pesce M, Gioia Klinger F, De Felici M. Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mech Dev. 2002;112:15鈥?4.
    46. de Sousa Lopes SM, Roelen BA, Monteiro RM, Emmens R, Lin HY, et al. BMP signaling mediated by ALK2 in the visceral endoderm is necessary for the generation of primordial germ cells in the mouse embryo. Genes Dev. 2004; 18:1838鈥?9.
    47. Hayashi K, de Sousa Lopes SM, Surani MA. Germ cell specification in mice. Science. 2007;316:394鈥?.
    48. Sato M, Kimura T, Kurokawa K, Fujita Y, Abe K, et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech Dev. 2002;113:91鈥?.
    49. Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, et al. Stella is a maternal effect gene required for normal early development in mice. Curr Biol. 2003;13:2110鈥?.
    50. Hay B, Jan LY, Jan YN. A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell. 1988;55:577鈥?7.
    51. Noce T, Okamoto-Ito S, Tsunekawa N. Vasa homolog genes in mammalian germ cell development. Cell Struct Funct. 2001;26:131鈥?.
    52. Rossi P, Sette C, Dolci S, Geremia R. Role of c-kit in mammalian spermatogenesis. J Endocrinol Invest. 2000;23:609鈥?5.
    53. Eir铆n-L贸pez JM, Ausi贸 J. Boule and the evolutionary origin of metazoan gametogenesis: a Grandpa鈥檚 Tale. Int J Evol Biol. 2011;2011:972457.
    54. Kerr CL, Cheng L. The dazzle in germ cell differentiation. J Mol Cell Biol. 2010;2:26鈥?.
    55. Haston KM, Tung JY, Reijo Pera RA. Dazl functions in maintenance of pluripotency and genetic and epigenetic programs of differentiation in mouse primordial germ cells in vivo and in vitro. PLoS ONE. 2009;4:e5654.
    56. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA. 2003;100:11457鈥?2.
    57. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, et al. Derivation of oocytes from mouse embryonic stem cells. Science. 2003;300:1251鈥?.
    58. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature. 2004;427:148鈥?4.
    59. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell. 2006;11:125鈥?2.
    60. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet. 2004;13:727鈥?9.
    61. Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol. 2005;16:530鈥?.
    62. Park TS, Galic Z, Conway AE, Lindgren A, van Handel BJ, et al. Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is significantly improved by coculture with human fetal gonadal cells. Stem Cells. 2009;27:783鈥?5.
    63. Geens M, Sermon KD, Van de Velde H, Tournaye H. Sertoli cell-conditioned medium induces germ cell differentiation in human embryonic stem cells. J Assist Reprod Genet. 2011;28:471鈥?0.
    64. West FD, Machacek DW, Boyd NL, Pandiyan K, Robbins KR, et al. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells. 2008;26:2768鈥?6.
    65. Kee K, Gonsalves JM, Clark AT, Pera RA. Bone morphogenetic proteins induce germ cell differentiation from human embryonic stem cells. Stem Cells Dev. 2006;15:831鈥?.
    66. Eguizabal C, Montserrat N, Vassena R, Barragan M, Garreta E, et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells. 2011;29:1186鈥?5.
    67. West FD, Roche-Rios MI, Abraham S, Rao RR, Natrajan MS, et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum Reprod. 2010;25:168鈥?8.
    68. Fukunaga N, Teramura T, Onodera Y, Takehara T, Fukuda K, et al. Leukemia inhibitory factor (LIF) enhances germ cell differentiation from primate embryonic stem cells. Cell Reprogram. 2010;12:369鈥?6.
    69. Easley CA 4th, Phillips BT, McGuire MM, Barringer JM, Valli H, et al. Direct Differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep. 2012.
    70. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature. 2009;462:222鈥?.
    71. Panula S, Medrano JV, Kee K, Bergstrom R, Nguyen HN, et al. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet. 2011;20:752鈥?2.
    72. Medrano JV, Ramathal C, Nguyen HN, Simon C, Reijo Pera RA. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells. 2012;30:441鈥?1.
    73. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519鈥?2.
    74. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, et al. Offspring from oocytes derived from in vitro primordial germ cell鈥搇ike cells in mice. Science. 2012.
    75. Teramura T, Takehara T, Kawata N, Fujinami N, Mitani T, et al. Primate embryonic stem cells proceed to early gametogenesis in vitro. Cloning Stem Cells. 2007;9:144鈥?6.
    76. Yamauchi K, Hasegawa K, Chuma S, Nakatsuji N, Suemori H. In vitro germ cell differentiation from cynomolgus monkey embryonic stem cells. PLoS ONE. 2009;4:e5338.
    77. Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, et al. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell. 2012;11:715鈥?6.
    78. Gore A, Li Z, Fung HL, Young JE, Agarwal S, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63鈥?.
    79. Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58鈥?2.
    80. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68鈥?3.
    81. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9:17鈥?3.
    82. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell. 2010;6:407鈥?1.
    83. Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 2008;26:313鈥?.
    84. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743鈥?.
    85. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318鈥?1.
    86. Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39:661鈥?.
    87. Kashir J, Konstantinidis M, Jones C, Lemmon B, Lee HC, et al. A maternally inherited autosomal point mutation in human phospholipase C zeta (PLCzeta) leads to male infertility. Hum Reprod. 2012;27:222鈥?1.
    88. Ghadami M, Salama SA, Khatoon N, Chilvers R, Nagamani M, et al. Toward gene therapy of primary ovarian failure: adenovirus expressing human FSH receptor corrects the Finnish C566T mutation. Mol Hum Reprod. 2008;14:9鈥?5.
  • 作者单位:Takeshi Teramura (1) (2)
    John Frampton (3)

    1. Institute of Advanced Clinical Medicine, Kinki University Faculty of Medicine, 377-2 Osaka-sayama, Osaka, Japan
    2. Department of Obstetrics and Gynecology, Mie University Faculty of Medicine, Tsu, Mie, Japan
    3. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
文摘
Despite recent advances in reproductive medicine, there are still no effective treatments for severe infertility caused by congenital absence of germ cells or gonadotoxic treatments during prepubertal childhood. However, the development of technologies for germ cell formation from stem cells in vitro, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells may provide new solutions for treating these severe fertility problems. It may be possible to produce germ cells in vitro from our own somatic cells that can be used to restore fertility. In addition, these technologies may also bring about novel therapies by helping to elucidate the mechanisms of human germ cell development. In this review, we describe the current approaches for obtaining germ cells from pluripotent stem cells, and provide basic information about induction of pluripotency and germ cell development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700