Severely depleted genetic diversity and population structure of a large predatory marine fish (Lates japonicus) endemic to Japan
详细信息    查看全文
  • 作者:Hiroshi Takahashi ; Naohiko Takeshita ; Hideaki Tanoue ; Shusaku Ueda&#8230
  • 关键词:Genetic diversity ; Rarity ; Population structure ; Demographic history ; Population fragmentation
  • 刊名:Conservation Genetics
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:16
  • 期:5
  • 页码:1155-1165
  • 全文大小:674 KB
  • 参考文献:Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge
    Bensch S, 脜kesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899鈥?914. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?005.鈥?2655.鈥媥 CrossRef PubMed
    Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372鈥?373. doi:10.鈥?093/鈥媌ioinformatics/鈥媌tq110 CrossRef PubMed
    Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol 29:1917鈥?932. doi:10.鈥?093/鈥媘olbev/鈥媘ss086 CrossRef PubMed Central PubMed
    Campbell D, Bernatchez L (2004) Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol Biol Evol 21:945鈥?56. doi:10.鈥?093/鈥媘olbev/鈥媘sh101 CrossRef PubMed
    Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998a) Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity 80:187鈥?97CrossRef
    Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998b) When oceans meet: a teleost shows secondary intergradation at an Indian鈥揚acific interface. Proc R Soc Lond B 265:415鈥?20. doi:10.鈥?098/鈥媟spb.鈥?998.鈥?310 CrossRef
    DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461鈥?73. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?000.鈥媡b00748.鈥媥 CrossRef
    Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359鈥?61. doi:10.鈥?007/鈥媠12686-011-9548-7 CrossRef
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611鈥?620CrossRef PubMed
    Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564鈥?67. doi:10.鈥?111/鈥媕.鈥?755-0998.鈥?010.鈥?2847.鈥媥 CrossRef PubMed
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479鈥?91PubMed Central PubMed
    Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574鈥?78CrossRef PubMed Central PubMed
    Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537鈥?55CrossRef
    Foose TJ (1986) Riders of the last ark: the role of captive breeding in conservation strategies. In: Kaufman L, Mallory K (eds) The last extinction. MIT Press, Cambridge, pp 149鈥?78
    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, CambridgeCrossRef
    Frost LA, Evans BS, Jerry DR (2006) Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261:1056鈥?064. doi:10.鈥?016/鈥媕.鈥媋quaculture.鈥?006.鈥?9.鈥?04 CrossRef
    Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol 16:1377鈥?387. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?007.鈥?3247.鈥媥 CrossRef PubMed
    Greenwood PH (1976) A review of the family Centropomidae (Pisces, Perciformes). Bull Brit Mus Nat Hist Zool 29:1鈥?1
    Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157鈥?164PubMed Central PubMed
    Iwatsuki Y, Tashiro K, Hamasaki T (1993) Distribution and fluctuation in occurrence of the Japanese centropomid fish, Lates japonicus. Jpn J Ichthyol 40:327鈥?32
    Japan Ministry of the Environment (2013) Threatened wildlife of Japan, red data book, 4th edn. Japan Wildlife Research Center, Tokyo (in Japanese)
    Johnson JA, Tingay RE, Culver M, Hailer F, Clarke ML, Mindell DP (2009) Long-term survival despite low genetic diversity in the critically endangered Madagascar fish-eagle. Mol Ecol 18:54鈥?3. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?008.鈥?4012.鈥媥 PubMed
    Kakehi Y, Nakayama K, Watanabe K, Nishida M (2005) Inheritance of amplified fragment length polymorphism markers and their utility in population genetic analysis of Plecoglossus altivelis. J Fish Biol 66:1529鈥?544. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?005.鈥?0683.鈥媥 CrossRef
    Katayama M, Taki Y (1984) Lates japonicus, a new centropomid fish from Japan. Jpn J Ichthyol 30:361鈥?67
    Kinoshita I, Iwatsuki Y (1996) Akame Lates japonicus. In: Japanese Society for the Protection of Fishery Resources (ed) Basic data on rare aquatic wildlife of Japan (III). Japanese Society for the Protection of Fishery Resources, Tokyo, pp 103鈥?06 (in Japanese)
    Kinoshita I, Fujita S, Takahashi I, Azuma K (1988) Occurrence of larval and juvenile Japanese snook, Lates japonicus, in the Shimanto estuary, Japan. Jpn J Ichthyol 34:462鈥?67
    Kubota H, Watanabe K, Kakehi Y, Watanabe S (2008) An assessment of genetic diversity in wild and captive populations of endangered Japanese bitterling Tanakia tanago (Cyprinidae) using amplified fragment length polymorphism (AFLP) markers. Fish Sci 74:494鈥?02CrossRef
    Lin G, Lo LC, Zhu ZY, Feng F, Chou R, Yue GH (2006) The complete mitochondrial genome sequence and characterization of single-nucleotide polymorphisms in the control region of the Asian seabass (Lates calcarifer). Mar Biotechnol 8:71鈥?9. doi:10.鈥?007/鈥媠10126-005-5051-z CrossRef PubMed Central PubMed
    Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963鈥?74. doi:10.鈥?046/鈥媕.鈥?365-294x.鈥?998.鈥?0414.鈥媥 CrossRef PubMed
    Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91鈥?9. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?994.鈥媡b00109.鈥媥 CrossRef PubMed
    Mabuchi K, Miya M, Azuma Y, Nishida M (2007) Independent evolution of the specialized pharyngeal jaw apparatus in cichlid and labrid fishes. BMC Evol Biol 7:10. doi:10.鈥?186/鈥?471-2148-7-10 CrossRef PubMed Central PubMed
    McCusker MR, Bentzen P (2010a) Historical influences dominate the population genetic structure of a sedentary marine fish, Atlantic wolffish (Anarhichas lupus), across the North Atlantic Ocean. Mol Ecol 19:4228鈥?241. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?010.鈥?4806.鈥媥 CrossRef PubMed
    McCusker MR, Bentzen P (2010b) Positive relationships between genetic diversity and abundance in fishes. Mol Ecol 19:4852鈥?862. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?010.鈥?4822.鈥媥 CrossRef PubMed
    Milot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of Albatrosses. Proc R Soc B Biol Sci 274:779鈥?87. doi:10.鈥?098/鈥媟spb.鈥?006.鈥?221 CrossRef
    Miya M, Friedman M, Satoh TP, Takeshima H, Sado T, Iwasaki W, Yamanoue Y, Nakatani M, Mabuchi K, Inoue JG, Poulsen JY, Fukunaga T, Sato Y, Nishida M (2013) Evolutionary origin of the Scombridae (tunas and mackerels): members of a paleogene adaptive radiation with 14 other pelagic fish families. PLoS ONE 8:e73535. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?073535 CrossRef PubMed Central PubMed
    Mock KE, Evans RP, Crawford M, Cardall BL, Janecke SU, Miller MP (2006) Rangewide molecular structuring in the Utah sucker (Catostomus ardens). Mol Ecol 15:2223鈥?238. doi:10.鈥?111/鈥媕.鈥?365-294X.鈥?006.鈥?2932.鈥媥 CrossRef PubMed
    Moritz C (1999) Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130:217鈥?28. doi:10.鈥?111/鈥媕.鈥?601-5223.鈥?999.鈥?0217.鈥媥 CrossRef
    Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269鈥?273CrossRef PubMed Central PubMed
    O鈥橪eary SJ, Hice LA, Feldheim KA, Frisk MG, McElroy AE, Fast MD, Chapman DD (2013) Severe inbreeding and small effective number of breeders in a formerly abundant marine fish. PLoS ONE 8:e66126. doi:10.鈥?371/鈥媕ournal.鈥媝one.鈥?066126 CrossRef PubMed Central PubMed
    Pinsky ML, Palumbi SR (2014) Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol 23:29鈥?9. doi:10.鈥?111/鈥媘ec.鈥?2509 CrossRef PubMed
    Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847鈥?59. doi:10.鈥?038/鈥媙rg1707
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945鈥?59PubMed Central PubMed
    Rambaut A, Drummond AJ (2007) Tracer v1.4. http://鈥媌east.鈥媌io.鈥媏d.鈥媋c.鈥媢k/鈥媠oftware/鈥媡racer/鈥?/span>
    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223鈥?25
    Schwartz MK, Luikart G, Waples R (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25鈥?3. doi:10.鈥?016/鈥媕.鈥媡ree.鈥?006.鈥?8.鈥?09 CrossRef PubMed
    Setiamarga DHE, Miya M, Yamanoue Y, Azuma Y, Inoue JG, Ishiguro NB, Mabuchi K, Nishida M (2009) Divergence time of the two regional medaka populations in Japan as a new time scale for comparative genomics of vertebrates. Biol Lett 5:812鈥?16. doi:10.鈥?098/鈥媟sbl.鈥?009.鈥?4191 CrossRef PubMed Central PubMed
    Song J, Song Z, Yue B, Zheng W (2006) Assessing genetic diversity of wild populations of Prenant鈥檚 schizothoracin, Schizothorax prenanti, using AFLP markers. Environ Biol Fish 77:79鈥?6. doi:10.鈥?007/鈥媠10641-006-9056-x CrossRef
    Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261鈥?5264. doi:10.鈥?073/鈥媝nas.鈥?403809101 CrossRef PubMed Central PubMed
    Stow A, Zenger K, Briscoe D, Gillings M, Peddemors V, Otway N, Harcourt N (2006) Isolation and genetic diversity of endangered grey nurse shark (Carcharias taurus) populations. Biol Lett 2:308鈥?11. doi:10.鈥?098/鈥媟sbl.鈥?006.鈥?441 CrossRef PubMed Central PubMed
    Su谩rez-Moo PJ, Rocha-Olivares A, Zapata-P茅rez O, Quiroz-Moreno A, S谩nchez-Teyer LF (2013) High genetic connectivity in the Atlantic sharpnose shark, Rhizoprionodon terraenovae, from the southeast Gulf of Mexico inferred from AFLP fingerprinting. Fish Res 147:338鈥?43. doi:10.鈥?016/鈥媕.鈥媐ishres.鈥?013.鈥?7.鈥?03 CrossRef
    Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylogenet Evol 21:135鈥?55. doi:10.鈥?006/鈥媘pev.鈥?001.鈥?001 CrossRef PubMed
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731鈥?739. doi:10.鈥?093/鈥媘olbev/鈥媘sr121 CrossRef PubMed Central PubMed
    Uchida Y (2005) A mysterious fish in the Shimanto estuary: life history of Lates japonicus. Aquabiology 27:24鈥?9 (in Japanese)
    Vekemans X, Beauwens T, Lemaire M, Rold谩n-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139鈥?51. doi:10.鈥?046/鈥媕.鈥?962-1083.鈥?001.鈥?1415.鈥媥 CrossRef PubMed
    von der Heyden S, Lipinski MR, Matthee CA (2010) Remarkably low mtDNA control region diversity in an abundant demersal fish. Mol Phylogenet Evol 55:1183鈥?188. doi:10.鈥?016/鈥媕.鈥媦mpev.鈥?009.鈥?9.鈥?18 CrossRef PubMed
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407鈥?414. doi:10.鈥?093/鈥媙ar/鈥?3.鈥?1.鈥?407 CrossRef PubMed Central PubMed
    Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. J Fish Biol 44:213鈥?32. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?994.鈥媡b01200.鈥媥 CrossRef
    Ward RD, Holmes BH, Yearsley GK (2008) DNA barcoding reveals a likely second species of Asian sea bass (barramundi) (Lates calcarifer). J Fish Biol 72:458鈥?63. doi:10.鈥?111/鈥媕.鈥?095-8649.鈥?007.鈥?1703.鈥媥 CrossRef
    Watanabe K, Kano Y, Takahashi H, Mukai T, Kakioka R, Tominaga K (2010) GEDIMAP: a database of genetic diversity for Japanese freshwater fishes. Ichthyol Res 57:107鈥?09. doi:10.鈥?007/鈥媠10228-009-0129-7 CrossRef
    Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907鈥?13. doi:10.鈥?046/鈥媕.鈥?365-294x.鈥?999.鈥?0620.鈥媥 CrossRef PubMed
  • 作者单位:Hiroshi Takahashi (1)
    Naohiko Takeshita (1)
    Hideaki Tanoue (1)
    Shusaku Ueda (2)
    Hirohiko Takeshima (2) (4)
    Teruhisa Komatsu (2)
    Izumi Kinoshita (3)
    Mutsumi Nishida (2) (5)

    1. National Fisheries University, 2-7-1 Nagata-honmachi, Shimonoseki, Yamaguchi, 759-6595, Japan
    2. Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
    4. The Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
    3. Usa Marine Biological Institute, Kochi University, 194 Inoshiri, Usa, Tosa, Kochi, 781-1164, Japan
    5. University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Human Genetics
    Animal Anatomy, Morphology and Histology
    Plant Sciences
    Evolutionary Biology
  • 出版者:Springer Netherlands
  • ISSN:1572-9737
文摘
Marine fish generally show higher genetic diversity and shallower population structure than freshwater fish, but data for rare species are lacking. A latid fish, akame (Lates japonicus), is a rare, large predatory fish endemic to Japan, occurring mainly in the estuaries and coastal waters of Kochi and Miyazaki prefectures. Among species of Lates, akame is the only one adapted to temperate waters, while the others are distributed in tropical waters. Despite conservation concerns for this species, almost nothing is known about its population genetic characteristics. We used amplified fragment length polymorphism (AFLP) and mitochondrial DNA (mtDNA) markers to describe the genetic variation and its partitioning among juvenile samples collected from multiple localities and over different years. Twenty-four primer combinations detected a total of 522 AFLP loci, only 40 (7.7 %) of which were polymorphic. Sequence analysis of the entire mtDNA control region identified only five haplotypes defined by four variable sites. The level of genetic diversity revealed by both genetic markers was unusually low compared to other marine fish and comparable to levels observed for some endangered freshwater fish exhibiting some of the lowest levels of genetic diversity among vertebrate populations. Analysis of molecular variance for the AFLP data indicated a weak but significant population structure (F CT = 0.07, P < 0.001) between the Kochi and Miyazaki regions. Our results highlight the need for in situ conservation efforts for akame across its entire distribution range and throughout its entire life cycle to minimize extinction risks associated with environmental and demographic stochasticity. Keywords Genetic diversity Rarity Population structure Demographic history Population fragmentation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700