Impact of Tannery Effluent on the Self-purification Capacity and Biodiversity Level of a River
详细信息    查看全文
  • 作者:Embialle Mengistie ; Argaw Ambelu…
  • 关键词:Tannery effluent ; Chromium ; Sulfide ; Self ; purification ; Macroinvertebrate
  • 刊名:Bulletin of Environmental Contamination and Toxicology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:96
  • 期:3
  • 页码:369-375
  • 全文大小:450 KB
  • 参考文献:AWRA (2009) Managing and protecting water resources and their supply systems to meet human and environmental needs, thematic report, 5th world water forum, Istanbul, pp 4–5
    Barbour MT, Gerritsen J, Snyder BD, and Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, DC
    Camargo JA (1992) New diversity index for assessing structural alterations in aquatic communities. Bull Environ Contam Toxicol 48:428–434
    Chapman PM (1986) Sediment quality criteria from the sediment quality triad: an example. Environ Toxicol Chem 5:957–964CrossRef
    Chapra SC (2008) Surface water-quality modeling. Waveland Press, Long Grove, pp 247–250
    Chekole ZF (2006) Controlling the informal sector solid waste collection. Addis Ababa City Administration, pp 125–131
    Chua H, Yu PF, Sin SN, Cheung MWL (1999) Sub-lethal effects of heavy metals on activated sludge microorganisms. Chemosphere 39(15):2681–2962CrossRef
    Corbi JJ, Trivinho-Strixino S (2008) Relationship between sugar cane cultivation and stream macroinvertebrate communities: a study developed in the southeast of Brazil. Braz Arch Biol Technol 51(4):769–779CrossRef
    Cummings EC (2008) Conceptual model development and testing of factors affecting select benthic macroinvertebrate metrics in select Ozark Highland streams. University of Arkansas, ProQuest, Ann Arbor
    Eaton AD, Greenberg AE, Clesceri LS, Franson MAH (2005) Standard methods for examination of water and wastewater. American Public Health Association, Washington, DC
    Fakayode SO (2005) Impact assessment of industrial effluent on water quality of the receiving Alaro River in Ibadan, Nigeria. Afr J Environ Sci Technol 10:1–13
    Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1998) Concentration of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho. Arch Environ Contam Toxicol 34:119–127CrossRef
    Guidotti TL (1996) Hydrogen sulfide. Occup Med 46:367–371CrossRef
    Ifabiyi IP (2008) Self purification of a freshwater stream in Ile–Ife: lessons for water management. J Hum Ecol 4(2):131–137
    Jenkins D, Richard MG, Daigger GT (2003) Manual on the causes and control of activated sludge bulking and foaming. Lewis Publishers, Florida
    Jin RC, Yang GF, Zhang QQ, Ma C, Yu JJ, Xing BS (2012) The effect of sulfide inhibition on the ANAMMOX process. Water Res 47:1459–1469CrossRef
    John M, Anita W (2008) Fresh water manual. Natural environment research council, center for ecology and hydrology. Technical report 5(07):13
    John SV, Ramesh R, Rao PS, Saravanam P, Sridharnath B, Muarlidharan C (2001) Water management in leather industry. J Sci Ind Res 60:443–450
    Juliano JC, Felipe AS, Ricardo Z, Ademir S, Claudio GF, Susana TS (2011) Assessment of chromium contamination in the Monte Alegre stream: a case study. Braz Arch Biol Technol 54(3):613–620CrossRef
    Kaplan H (1983) Nitrification. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 139–190CrossRef
    Karouna-Renier NK, Sparling DW (2001) Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environ Pollut 112:183–192CrossRef
    Leslie HA, Vaate P, Kraak MHS (1999) Triad assessment of the impact of chromium contamination on benthic macroinvertebrates in the Chusovaya River (Urals, Russia). Arch Environ Contam Toxicol 37:182–189CrossRef
    Liebmann H (1960) Handbook of freshwater and wastewater biology (German). R Oldenbourg, Munich
    Lokeshwari M, Nanjunda C (2006) Decentralization of solid waste management system: International conference on Resource Utilization and Intelligent Systems at Kongu Engineering College 1:324–328
    Mala J, Maly J (2009) Effect of heavy metals on self-purification processes in rivers. Appl Ecol Environ Res 7(4):333–340CrossRef
    Milner AM (1994) System recovery. In: Calow P, Petts GE (eds) The rivers handbook, vol 2. Blackwell Scientific Publications, London, pp 76–94CrossRef
    Milone C (2002) The effects of globalization on the African leather sector. UNIDO
    Mitchell MK, Stapp WB (1992) Field manual for water quality monitoring: an environmental education program for schools, 6th edn. Thomson-Shore Inc, Dexter, Mich
    Molik A, Siepak J, Świetlik R, Dojlido JR (2004) Identification of chromium species in tanning solutions. Pol J Environ Stud 13(3):311–314
    Mowat A (1976) Measurement of metal toxicity by biochemical oxygen demand. J Water Pollut Control Fed 48(5):853–866
    Mwinyihija M, Strachan NJC, Dawson J, Meharg A, Killham K (2006) An ecotoxicological approach to assessing the impact of tanning industry effluent on river health. Arch Environ Contam Toxicol 50:316–324CrossRef
    Natella M, Harold JS (2014) Effect of sulfide on growth of marine bacteria. Arch Microbiol 196:279–287CrossRef
    O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochem 33(5):555–569CrossRef
    Pimentel D, Berger B, Filiberto D, Newton M, Wolfe B, Karabinakis E, Clark S, Poon E, Abbett E, Nandaopal S (2004) Water resources, agriculture, and the environment. Ithaca, NY, New York State College of Agriculture and Life Sciences, Cornell University. Environmental Biology Report 04-1
    Plafkin JL, Barbour MT, Porter KD, Gross SK, Hughes RM (1989) Rapid bioassessment protocols for use in streams and rivers. In: USEPA (Ed) Benthic macroinvertebrates and fish, vol 440, pp 4–89
    Reeves GH, Hall JD, Roelofs TD, Hickman TL, Baker CO (1994) Rehabilitating and modifying stream habitats. Am Fish Soc Symp 19:519–558
    Ros M, Ganter A (1998) Possibilities of reduction of recipient loading of tannery waste Slovenia. Water Sci Technol 37:145–152CrossRef
    Samuel M, Wondimu T, Dams R, Moens L (2007) Pollution status of Tinishu Akaki River and its tributaries (Ethiopia) evaluated using physic-chemical parameters, major ions and nutrients. Bull Chem Soc Ethiop 21:13–22
    Stanfield L (2010) Ontario stream assessment protocol. Version 8.0. Fisheries Policy Section
    Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect-systematics and the agony of choice. Biol Conserv 55:235–254CrossRef
    Ward RC, Loftis JC, McBride GB (1989) Proceedings international symposium on the design of water quality information systems. Colorado Water Resources Research Institute, pp 338–346
    Wardas M, Budek L, Rybicka EH (1996) Variability of heavy metals content in bottom sediments of the Wilga River. Appl Geochem 11:197–202CrossRef
    Whitton BA (1975) River ecology. Blackwell Scientific Publications, Oxford, pp 313–321
    Williams DD (2006) The biology of temporary waters. Oxford University Press, Oxford, pp 337–345
    Wong PT, Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 305–315
    Yoshida Y (1967) Studies of the marine nitrifying bacteria, with special reference to characteristics and nitrite formation of marine nitrite formers. Bull Misaki Mar Biol Inst 11:2–58
  • 作者单位:Embialle Mengistie (1)
    Argaw Ambelu (2)
    Tom Van Gerven (1)
    Ilse Smets (1)

    1. Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Louvain, Belgium
    2. Department of Environmental Health Sciences and Technology, Jimma University, P. O. Box: 378, Jimma, Ethiopia
  • 刊物主题:Pollution, general; Environmental Health; Ecotoxicology; Soil Science & Conservation; Environmental Chemistry; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution;
  • 出版者:Springer US
  • ISSN:1432-0800
文摘
The present study investigates the impact of tannery effluents on the self-purification capacity and the local macroinvertebrate community of one natural stream. As the concentration of chromium and sulfide increased from up- to downstream sites, the reduction of suspended solids, 5-days biological oxygen demand (BOD5), chemical oxygen demand and nitrification capacity decreased by 61 %, 21 %, 30 % and 74 %, respectively. Similarly, the share of Ephemeroptera, Plecoptera, and Trichoptera on the macroinvertebrate community decreased from 24 % to 0 %. Also the diversity (Simpson’s) index and the correlation between the physicochemical parameters, BOD5 reduction, the macroinvertebrate abundance and the chromium concentration underpin the importance of the contamination by tannery effluents for the degradation of the stream habitat quality. In conclusion, although the physicochemical parameters indicate that the self-purification of the river can be maintained for a certain stream section, the biodiversity of the river is severely compromised.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700