Exploiting Edge Effect to Control Generation Rate and Breakdown Voltage in Graphene Nanoribbon Field Effect Transistors
详细信息    查看全文
  • 作者:Mahdiar Ghadiry ; Harith Ahmad ; Alieh Hivechi ; Fatemeh Tavakoli
  • 关键词:Graphene ; Photodiode ; Generation rate ; Field effect transistors ; Breakdown voltage ; Edge effect
  • 刊名:Plasmonics
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:11
  • 期:2
  • 页码:573-577
  • 全文大小:1,450 KB
  • 参考文献:1.Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
    2.Geim AK, Nonselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
    3.Avouris P, Chen Z, Perebeinos V (2007) Carbon-based electronics. Nat Nanotechnol 2:605–615CrossRef
    4.Dragoman DDM (2008) Graphene-based quantum electronics. Prog Quantum Electron 33:165–241CrossRef
    5.Saeidmanesh M, Ghadiry MH, Khaledian M, Kiani MJ, Ismail R (2014) Carrier scattering and impact ionization in bilayer graphene. J Comput Electron 13:180–185CrossRef
    6.Rahmani M, Ismail R, Ahmadi MT, Ghadiry MH (2014) Quantum confinement effect on trilayer graphene nanoribbon carrier concentration. J Exp Nanosci 9:51–63CrossRef
    7.Abadi HKF, Ahmadi MT, Yusof R, Saeidmanesh M, Rahmani M, Kiani MJ et al (2014) Development of carbon nanotube based biosensors model for detection of single-nucleotide polymorphism. Sci Adv Mater 6:513–519CrossRef
    8.Ahmadi MT, Rahmani M, Ghadiry M, Ismail R (2012) Monolayer graphene nanoribbon homojunction characteristics. Sci Adv Mater 4:753–756CrossRef
    9.Ghadiry M, Ismail R, Naraghi B, Taheri Abed S, Kavosi D, Fotovatikhah F (2015) A new approach to model sensitivity of graphene-based gas sensors. Semicond Sci Technol 30(4):045012. doi:10.​1088/​0268-1242/​30/​4/​045012
    10.Ghadiry M, Nadi M, Mohammadi H, Bin Abd Manaf A (2012) Analysis of a novel full adder designed for implementing in carbon nanotube technology. J Circ Syst Comput 21(5):1250042
    11.Ghadiry MH, Abd Manaf A, Ahmadi MT, Sadeghi H, Senejani MN (2011) Design and analysis of a new carbon nanotube full adder cell. J Nanomater 2011:36. doi:10.​1155/​2011/​906237
    12.Ghadiry MH, Manaf AA, Mousavi SM, Sadeghi H (2011) Study the effect of applied voltage on propagation delay of bilayer graphene nanoribbon transistor. In: 2011 International Semiconductor Device Research Symposium, ISDRS 2011
    13.Rahmani M, Ahmadi MT, Ghadiry MH, Samadi J, Anwar S, Ismail R (2012) The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J Comput Theor Nanosci 9:1618–1621CrossRef
    14.Rahmani M, Ahmadi MT, Ismail R, Ghadiry MH (2013) Performance of bilayer graphene nanoribbon schottky diode in comparison with conventional diodes. J Comput Theor Nanosci 10:323–327CrossRef
    15.Taji S, Karimi A, Ghadiry M, Fotovatikhah F (2015) An analytical approach to calculate power and delay of carbon-based links in on-chip networks. J Comput Theor Nanosci 12:1775–1779CrossRef
    16.Zhao P, Choudhury M, Mohanram K, Guo J (2008) Computational model of edge effects in graphene nanoribbon transistors. Nano Res 1:395–402CrossRef
    17.Basu MJGD, Register LF, Banerjee SK, MacDonald AH (2008) Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Appl Phys Lett 92:042114CrossRef
    18.Youngki Yoon JG (2007) Effect of edge roughness in graphene nanoribbon transistors. Appl Phys Lett 91:073103CrossRef
    19.Park W-D, Tanioka K (2014) Avalanche multiplication and impact ionization in amorphous selenium. Jpn J Appl Phys 53:1347–4065
    20.Ghadiry M, Nadi M, Saiedmanesh M, Abadi HKF (2014) An analytical approach to study breakdown mechanism in graphene nanoribbon field effect transistors. J Comput Theor Nanosci 11:339–343CrossRef
    21.Ghadiry M, Ismail R, Saeidmanesh M, Khaledian M, Manaf AA (2014) Graphene nanoribbon field-effect transistor at high bias. Nanoscale Res Lett 9:1–5CrossRef
    22.Pirro L, Girdhar A, Leblebici Y, Leburton J-P (2012) Impact ionization and carrier multiplication in graphene. J Appl Phys 112(9):093707
    23.Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Theory of ionization mechanism in graphene nanoribbons. J Comput Theor Nanosci 9:2190–2192CrossRef
    24.Ghadiry M, Manaf ABA, Nadi M, Rahmani M, Ahmadi MT (2012) Ionization coefficient of monolayer graphene nanoribbon. Microelectron Reliab 52:1396–1400CrossRef
    25.Liao AD, Wu JZ, Wang X, Tahy K, Jena D, Dai H et al (2011) Thermally limited current carrying ability of graphene nanoribbons. Phys Rev Lett 106:256801CrossRef
    26.Lee K-J, Chandrakasan A, Kong J (2011) Breakdown current density of cvd-grown multilayer graphene interconnects. IEEE Electron Device Lett 32(4):557–559
    27.Hertel S, Kisslinger F, Jobst J, Waldmann D, Krieger M, Weber HB (2011) Current annealing and electrical breakdown of epitaxial graphene. Appl Phys Lett 98:212109CrossRef
    28.Girdhar A, Leburton JP (2011) Soft carrier multiplication by hot electrons in graphene. Appl Phys Lett 99:043107CrossRef
    29.Ghadiry MH, Nadi S M, Ahmadi MT, Manaf AA (2011) A model for length of saturation velocity region in double-gate graphene nanoribbon transistors. Microelectron Reliab 51:2143–2146CrossRef
    30.Fang T, Konar A, Xing H, Jena D (2011) High-field transport in two-dimensional graphene. Phys Rev B 84:125450CrossRef
    31.Murali R, Yang Y, Brenner K, Beck T, Meindl JD (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94:243114CrossRef
    32.Meric I, Han MY, Young AF, Ozyilmaz B, Kim P, Shepard KL (2008) Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat Nanotechnol 3:654–659. doi:10.​1038/​nnano.​2008.​268 CrossRef
    33.Ghadiry M, Nadi M, Bahadorian M, Manaf AA, Karimi H, Sadeghi H (2013) An analytical approach to calculate effective channel length in graphene nanoribbon field effect transistors. Microelectron Reliab 53:540–543CrossRef
    34.Ghadiry M, Nadi M, Rahmani M, Ahmadi M, Mahaf AA (2012) Modelling and simulation of saturation region in double gate graphene nanoribbon transistors. Semiconductors J 46(1):126–129
    35.Rubel O, Potvin A, Laughton D (2011) Generalized lucky-drift model for impact ionization in semiconductors with disorder. J Phys Condens Matter 23(5):055802
    36.Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18):187401
  • 作者单位:Mahdiar Ghadiry (1)
    Harith Ahmad (1)
    Alieh Hivechi (2)
    Fatemeh Tavakoli (3)
    Asrulnizam Abd Manaf (4)

    1. Photonic Research Center, University of Malaya, Kuala Lumpur, 50600, Malaysia
    2. Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, Arak Branch, Arak, Iran
    3. Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, Aligoudarz Branch, Aligoudarz, Iran
    4. School of Electrical and Electronics Engineering, Universiti Sains Malaysia, Penang, Malaysia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
Based on the influence of edge effect and channel shape, two new graphene nanoribbon field effect transistors are presented being useful in high-voltage and highly sensitive optical applications. We fabricated and examined our devices under different conditions. It is seen that by choosing the proper channel shape, ionization rate and breakdown voltage could be improved compared to a normal rectangular device. We report nearly 11 and 19 % improvements in breakdown voltage and ionization rate of graphene nanoribbon field effect transistors (GNRFET), respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700