Valproic acid: an anticonvulsant drug with potent antinociceptive and anti-inflammatory properties
详细信息    查看全文
  • 作者:José Christian Machado Ximenes (3)
    Danilo de Oliveira Gon?alves (1)
    Rafaelly Maria Pinheiro Siqueira (1)
    Kelly Rose Tavares Neves (1)
    Gilberto Santos Cerqueira (1)
    Alyne Oliveira Correia (2)
    Francisco Hélder Cavalcante Félix (4)
    Luzia Kalyne Almeida Moreira Leal (1)
    Gerly Anne de Castro Brito (1)
    Maria da Gra?a Naffah-Mazzacorati (3)
    Glauce Socorro de Barros Viana (1) (2) (5)
  • 关键词:Valproic acid/sodium valproate ; Inflammation ; Nociception ; Cytokines
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:386
  • 期:7
  • 页码:575-587
  • 全文大小:1473KB
  • 参考文献:1. Adcock IM (2007) HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150:829-31 CrossRef
    2. Bai G, Wei D, Zou S, Ren K, Dubner R (2010) Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 6:51-2 CrossRef
    3. Barnes PJ (2006) How corticosteroids control inflammation, Quintiles Prize Lecture 2005. Br J Pharmacol 148:245-54 CrossRef
    4. Berrino L, Oliva P, Massino F, Aurilio C, Maione S, Grella A, Rossi F (2003) Antinociceptive effect in mice of intraperitoneal N-methyl-D-aspartate receptor. Eur J Pain 7:131-37 CrossRef
    5. Biermann J, Griesbaber P, Goebel U, Martin G, Thanos S, Giovanni SD, Lagrèze WA (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Invest Ophthalmology Vision Sci 51:526-34 CrossRef
    6. Cardinale JP, Sriramula S, Pariault R, Guggilam A, Mariapan N, Elks CM, Francis J (2010) HDAC inhibition attenuates inflammatory, hypertrophic and hypertensive responses in spontaneously hypertensive rats. Hypertension 56:437-44 CrossRef
    7. Chen Q, Ouyang DY, Geng M, Xu LH, Zhang YT, Wang FP, He XH (2011) Valproic acid exhibits biphasic effects on apoptotic cell death of activated lymphocytes through differential modulation of multiple signaling pathways. J Immunotoxicol 8:210-18 CrossRef
    8. Chen Y, Boettger MK, Reif A, Schmitt A, ü?eyler N, Sommer C (2010) Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice. Molecular Pain 6:13-3 CrossRef
    9. Choi JH, Oh SW, Kang MS, Kwon HJ, Oh GT, Kim DY (2005) Trichostatin A attenuates airway inflammation in mouse asthma model. Clin and Exp Allergy 35:89-6 CrossRef
    10. Choi Y, Park S-K, Kim HM, Kang JS, Yoon YD, Han SB, Han JW, Yang JS, Han G (2008) Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endoxemia model. Exp and Mol Med 40:574-81 CrossRef
    11. Chung YL, Lee MY, Wang AJ, Yao LF (2003) A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol Ther 8:707-17 CrossRef
    12. Cunha F, Poole S, Lorenzetti B, Ferreira S (1992) The pivotal role of tumor necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107:660-64 CrossRef
    13. Dawson J, Sedgwick AD, Edwards JC, Lees P (1991) A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. IntJ of Tissue Reactants 13:171-85
    14. Dinarello CA (2006) Cytokines as potential therapeutic targets for inflammatory skin diseases. Ernst Schering Found Symp Proc 56:45-0 CrossRef
    15. Di Paola R, Di Marco R, Mazzon E, Genovese T, Bendtzen K, Macrì B, Nicoletti F, Cuzzocrea S (2004) Prevention of carrageenan-induced pleurisy in mice by anti-CD30 ligand monoclonal antibody. Clin Immunol 113:64-3 CrossRef
    16. Eisenberg E, Vos BP, Strassman AM (1993) The NMDA antagonist memantine blocks pain behavior in a rat model of formalin-induced facial pain. Pain 54:301-07 CrossRef
    17. Ferreira S, Lorenzetti B, Bristow A, Poole S (1988) Interleukin-1β as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334:698-00 CrossRef
    18. Furumai R, Ito A, Ogawa K, Maeda S, Saito A, Nishino N, Horinouchi S, Yoshida M (2011) Histone deacetylase inhibitors block nuclear factor-kB-dependent transcription by interfering with RNA polymerase II recruitment. Cancer Sci 102:1081-087 CrossRef
    19. Gordon SM, Dionne RA, Brahim J, Jabir F, Dubner R (1997) Blockade of peripheral neuronal barrage reduces postoperative pain. Pain 70:209-15 CrossRef
    20. G?ttlicher M, Minucci S, Zhu P, Kr?mer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969-978 CrossRef
    21. Gottschalk A, Smith DS, Jobes DR, Kennedy SK, Lally SE, Noble VE, Grugan KF, Seifert HA, Cheung A, Malkowicz SB et al (1998) Preemptive epidural analgesia and recovery from radical prostatectomy: a randomized controlled trial. JAMA 279:1076-082 CrossRef
    22. Grabiec AM, Krausz S, Jager W, Burakowski T, Groot D, Sanders ME, Prakken BJ, Maslinski W, Eldering E, Tak PP, Reedquist KA (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184:2718-728 CrossRef
    23. Grayson DR, Kundakovic M, Sharma RP (2010) Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders? Mol Pharmacol 77:126-35 CrossRef
    24. Guay J, Bateman K, Gordon R, Mancini J, Riendeau D (2004) Carrageenan-induced paw edema in rat elicits a predominant prostaglandins E2 (PGE2) response in the central nervous system associated with the induction of microsomal PGE2 synthase-1. J Biol Chem 279:24866-4873 CrossRef
    25. Halili MA, Andrews M, Sweet M, Fairlie DP (2009) Histone deacetylase inhibitors in inflammatory disease. Curr Topics in Med Chem 9:309-19 CrossRef
    26. Ichiyama T, Okada K, Lipton JM, Matsubara T, Hayashi T, Furukawa S (2000) Sodium valproate inhibits production of TNF-alpha and IL-6 and activation of NF-kappaB. Brain Res 857:246-51 CrossRef
    27. Kankaanranta H, Janka-Junttila M, Ilmarinen-Salo P, Ito K, Jalonen U, Ito M, Adcock IM, Moilanen E, Zhang X (2010) Histone deacetylase inhibitors induce apoptosis in human eosinophils and neutrophils. J Inflamm 7:9-3 CrossRef
    28. Kataoka T, Teraoka J, Sakoda A, Nishiyama Y, Yamoto K, Monden M, Ishimori Y, Nomura T, Taguchi T, Yamaoka K (2012) Protective effects of radon inhalation on carrageenan-induced inflammatory paw edema in mice. Inflammation 35:713-22 CrossRef
    29. Khan MIA, Walsh D, Brito-Dellan N (2011) Opioid and adjuvant analgesics: compared and contrasted. Am J Hospital Palliative Care 28:378-83 CrossRef
    30. Kr?mer OH, Zhu P, Ostendorff HP, Golebiewski M, Tiefenbach J, Peters MA, Brill B, Groner B, Bach I, Heinzel T, G?ttlicher M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. EMBO J 22:3411-420 CrossRef
    31. Lee IO, Kong MH, Kim NS, Choi YS, Lim SH, Lee MK (2000) Effect of different concentrations and volumes of formalin on pain response in rats. Acta Anaesthesiologica Sinica 38:59-4
    32. Leng Y, Chuang DM (2006) Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J Neurosci 26:7502-512 CrossRef
    33. Leoni F, Fossati G, Lewis EC, Lee JK, Porro G, Pagani P, Modena D, Moras ML, Pozzi P, Reznikov LL et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11:1-5 CrossRef
    34. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Dona G, Fossati G, Sozzani S, Azam T et al (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits anti-inflammatory properties via suppression of cytokines. Proc National Acad Sci USA 99:2995-000 CrossRef
    35. Li W, Zheng L, Sheng C, Cheng X, Qing L, Qu S (2011) Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease. Lipids Health Diseases 10:49 CrossRef
    36. Lin HY, Chen CS, Lin SP, Weng JR, Chen CS (2006) Targeting histone deacetylase in cancer therapy. Med Res Rev 26:397-13 CrossRef
    37. Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D (2007) Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 8:127-36 CrossRef
    38. Loscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669-94 CrossRef
    39. Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Ad in Cancer 91:137-68 CrossRef
    40. Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159:508-11 CrossRef
    41. Milutinovic S, D’Alessio AC, Detich N, Szyf M (2006) Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 28:560-71 CrossRef
    42. Moradei O, Maroun CR, Paquin I, Vaisburg A (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr Med Chem Anti-Cancer Agents 5:529-60 CrossRef
    43. Nalivaeva NN, Belyaev ND, Turner AJ (2009) Sodium valproate: an old drug with new roles. Trends in Pharmacol Sci 30:509-14 CrossRef
    44. Ni YF, Wang J, Yan XL, Tian F, Zhao JB, Wang YJ, Jiang T (2010) Histone deacetylase inhibitor, butyrate, attenuates lipopolysaccharide-induced acute lung injury in mice. Respir Res 11:33-0 CrossRef
    45. O’Donnell T, Rotzinger S, Nakashima TT, Hanstock CC, Ulrich M, Silverstone PH (2000) Chronic lithium and sodium valproate both decrease the concentration of myoinositol and increase the concentration of inositol monophosphates in rat brain. Brain Res 880:84-1 CrossRef
    46. Ohuchi K, Sato H, Tsurufuji S (1976) The content of prostaglandin E and prostaglandin F2-α in the exudate of carrageenan granuloma of rats. Biochem and Biophys Acta 424:439-48 CrossRef
    47. Perucca E (2002) Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 16:695-14 CrossRef
    48. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734-6741 CrossRef
    49. Piovesan EJ, Randunz V, Utiumi M, Lange MC, Kowacs PA, Mulinari RA, Oshinski M, Vital M, Sereniki A, Fernandes AF, Silva LL, Werneck LC (2008) Influence of NMDA and non-NMDA antagonists on acute and inflammatory pain in the trigeminal territory. Arquivos de Neuropsiquiatria 66:837-43 CrossRef
    50. Raza M, Dhariwal MA, Ageel AM, Quresh S (1996) Evaluation of the anti-inflammatory activity of sodium valproate in rats and mice. Gen Pharmacol 27:1395-400 CrossRef
    51. Roberge RJ, Francis EH (2002) Use of naloxone in valproic acid overdose: case report and review. J Emergency Med 22:67-0 CrossRef
    52. Rocha AC, Fernandes ES, Quint?o NL, Campos MM, Calixto JB (2006) Relevance of tumour necrosis factor-alpha for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol 148:688-95 CrossRef
    53. Rosenberg G (2007) The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cellular Mol and Life Sci 64:2090-103 CrossRef
    54. Salvamini D, Wang ZQ, Wyatt PS, Bourdon BM, Marino MH, Manning PT, Currie MG (1996) Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 118:829-38 CrossRef
    55. Salvemini D, Zhi-Ojang W, Bourdon DM, Stern MK, Currie MG, Manning PT (1996) Evidence of peroxynitrite involvement in the carrageenan-induced paw edema. Eur J Pharmacol 303:217-20 CrossRef
    56. Sawynok J, Reid A (2002) Modulation of formalin-induced behaviors and edema by local and systemic administration of dextromethorphan, memantine and ketamine. Eur J Pharmacol 450:153-62 CrossRef
    57. Shang Y, Jiang YX, Ding ZJ, Shen AL, Xu SP, Yuan SY, Yao SL (2010) Valproic acid attenuates the multiple-organ dysfunction in a rat model of septic shock. Chinese Med J 123:2682-687
    58. L-Shin S, Yatham Lakshmi N, Yen Chin-Bin Ravindran Arun V (2005) Effect of valproate on plasma levels of interleukin-6 in health male human. Int Clin Psychopharmacol 20:295-98 CrossRef
    59. Tverskoy M, Oz Y, Isakson A, Finger J, Bradley EL Jr, Kissin I (1994) Preemptive effect of fentanyl and ketamine on postoperative pain and wound hyperalgesia. Anesth Analg 78:205-09 CrossRef
    60. Vaden DI, Ding D, Peterson B, Geenberg MI (2001) Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 276:15466-5471 CrossRef
    61. Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH (2006) Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112:116-38 CrossRef
    62. Villar-Garea A, Esteller M (2004) Histone deacetylase inhibitors: understanding a new wave of anticancer drugs. Int J Cancer 112:171-78 CrossRef
    63. Vion-Dury J, Cupo A, Jarry T (1987) Analgesic properties of valproic acid might be related to the encephalin system in rat brain. Brain Res 408:243-46 CrossRef
    64. Watt AP, Schock BC, Ennis M (2005) Neutrophils and eosinophils: clinical implications of their appearance, presence and disappearance in asthma and COPD. Current Drug Targets-Inflammation Allergy 4:415-23 CrossRef
    65. Willmore LJ (2003) Divalproex and epilepsy. Psychopharmacol Bull 37:43-3
    66. Ximenes JCM, Lima-Verde EC, Naffah-Mazzacoratti MG, Viana GSB (2012) Valproic acid, a drug with multiple molecular targets related to its potential neuroprotective action. Neurosci and Med 3:107-23 CrossRef
    67. Zabel P, Schade FU, Schlaak M (1993) Inhibition of endogenous TNF formation by pentoxifylline. Immunobiology 187:447-63 CrossRef
    68. Zakusov VV, Ostrovskaya RU, Bulayev VM (1983) GABA-opiates interactions in the activity of analgesics. Archives of Int Pharmacodynamics and Ther 265:61-5
  • 作者单位:José Christian Machado Ximenes (3)
    Danilo de Oliveira Gon?alves (1)
    Rafaelly Maria Pinheiro Siqueira (1)
    Kelly Rose Tavares Neves (1)
    Gilberto Santos Cerqueira (1)
    Alyne Oliveira Correia (2)
    Francisco Hélder Cavalcante Félix (4)
    Luzia Kalyne Almeida Moreira Leal (1)
    Gerly Anne de Castro Brito (1)
    Maria da Gra?a Naffah-Mazzacorati (3)
    Glauce Socorro de Barros Viana (1) (2) (5)

    3. Federal University of S?o Paulo, S?o Paulo (UNIFESP), S?o Paulo, Brazil
    1. Faculty of Medicine of the Federal University of Ceará (UFC), Fortaleza, Brazil
    2. Faculty of Medicine Estácio of Juazeiro do Norte (FMJ), Ceará, Brazil
    4. Albert Sabin Hospital, Fortaleza, Brazil
    5. Rua Barbosa de Freitas, 130/1100, Fortaleza, Brazil
  • ISSN:1432-1912
文摘
Valproic acid (VA) is a major antiepileptic drug, used for several therapeutic indications. It has a wide activity spectrum, reflecting on mechanisms of action that are not fully understood. The objectives of this work were to study the effects of VA on acute models of nociception and inflammation in rodents. VA (0.5, 1, 10, 25, and 50?mg/kg, p.o.) effects were evaluated on the carrageenan-induced paw edema, carrageenan-induced peritonitis, and plantar tests in rats, as well as by the formalin test in mice. The HE staining and immunohistochemistry assay for TNF-α in carrageenan-induced edema, from paws of untreated and VA-treated rats, were also carried out. VA decreased paw edema after carrageenan, and maximum effects were seen with doses equal to or higher than 10?mg/kg. VA also preserved the tissue architecture as assessed by the HE staining. Immunohistochemical studies revealed that VA significantly reduced TNF-α immunostaining in carrageenan-inflamed rat paws. In addition, the anti-inflammatory action of VA was potentiated by pentoxifylline (a phosphodiesterase inhibitor, known to inhibit TNF-α production), but not by sodium butyrate or by suberoylanilide hydroxamic acid (SAHA), nonspecific and specific inhibitors, respectively, of histone deacetylase. However, the decrease in the number of positive TNF-α cells in the rat paw was drastically potentiated in the VA-?SAHA associated group. VA also reduced leukocytes and myeloperoxidase (MPO) releases to the peritoneal exudate, in the carrageenan-induced peritonitis. Although in the formalin test, VA inhibited both phases, the inhibition was mainly on the second phase. Furthermore, VA significantly increased the reaction time to thermal stimuli, as assessed by the plantar test. VA is a multi-target drug, presenting potent antinociceptive and anti-inflammatory properties at a lower dose range. These effects are partly dependent upon its inhibitory action on TNF-α-related pathways. However, the participation of the HDAC inhibition with the VA anti-inflammatory action cannot be ruled out. Inflammatory processes are associated with free radical damage and oxidative stress, and their blockade by VA could also explain the present results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700