Beyond body mass: how prey traits improve predictions of functional response parameters
详细信息    查看全文
  • 作者:Ryan M. Kalinoski ; John P. DeLong
  • 关键词:Handling time ; Area of capture ; Interaction strength ; Copepods ; Allometry ; Trait ; based ecology
  • 刊名:Oecologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:180
  • 期:2
  • 页码:543-550
  • 全文大小:589 KB
  • 参考文献:Alcaraz M, Strickler JR (1988) Locomotion in copepods: pattern of movements and energetics of Cyclops. Hydrobiologia 167–168:409–414. doi:10.​1007/​BF00026333 CrossRef
    Aljetlawi AA, Sparrevik E, Leonardsson K (2004) Prey–predator size-dependent functional response: derivation and rescaling to the real world. J Anim Ecol 73:239–252. doi:10.​1111/​j.​0021-8790.​2004.​00800.​x
    Bolker BM (2011) Ecological models and data in R. Princeton University, Princeton
    Brandl Z (1998) Feeding strategies of planktonic cyclopoids in lacustrine ecosystems. J Mar Syst 15:87–95. doi:10.​1016/​S0924-7963(97)00042-0 CrossRef
    Brose U (2010) Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct Ecol 24:28–34CrossRef
    Burgis MJ (1971) The ecology and production of copepods, particularly Thermocyclops hyalinus, in the tropical Lake George, Uganda. Freshw Biol 1:169–192. doi:10.​1111/​j.​1365-2427.​1971.​tb01555.​x CrossRef
    Burnside WR, Erhardt EB, Hammond ST, Brown JH (2014) Rates of biotic interactions scale predictably with temperature despite variation. Oikos 123:1449–1456. doi:10.​1111/​oik.​01199 CrossRef
    Chang K-H, Hanazato T (2011) The predacious cladoceran Leptodora kindtii as a prey for the cyclopoid copepod Mesocyclops sp.: laboratory observations of predator–prey interaction. J Freshw Ecol 20:655–660CrossRef
    Dell AI, Pawar S, Savage VM (2014) Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J Anim Ecol 83:70–84. doi:10.​1111/​1365-2656.​12081 CrossRef PubMed
    DeLong JP, Vasseur DA (2012a) Size-density scaling in protists and the links between consumer–resource interaction parameters. J Anim Ecol 81:1193–1201. doi:10.​1111/​j.​1365-2656.​2012.​02013.​x CrossRef PubMed
    DeLong JP, Vasseur DA (2012b) A dynamic explanation of size-density scaling in carnivores. Ecology 93:470–476CrossRef PubMed
    Englund G, Öhlund G, Hein CL, Diehl S (2011) Temperature dependence of the functional response. Ecol Lett 14:914–921. doi:10.​1111/​j.​1461-0248.​2011.​01661.​x CrossRef PubMed
    Enríquez-García C, Nandin S, Sarma SSS (2013) Feeding behaviour of Acanthocyclops americanus (Marsh) (Copepoda: Cyclopoida). J Nat Hist 47:853-862. doi:10.​1080/​00222933.​2012.​747637
    Gilbert B, Tunney TD, McCann KS et al (2014) A bioenergetic framework for the temperature dependence of trophic interactions. Ecol Lett 17:902–914. doi:10.​1111/​ele.​12307 CrossRef PubMed
    Holling C (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91:293–320CrossRef
    Jeschke JM, Tollrian R (2000) Density-dependent effects of prey defences. Oecologia 123:391–396. doi:10.​1007/​s004420051026 CrossRef
    Kalinkat G, Schneider FD, Digel C et al (2013) Body masses, functional responses and predator–prey stability. Ecol Lett 16:1126–1134. doi:10.​1111/​ele.​12147 CrossRef PubMed
    Klecka J, Boukal DS (2013) Foraging and vulnerability traits modify predator–prey body mass allometry: freshwater macroinvertebrates as a case study. J Anim Ecol 82:1031–1041. doi:10.​1111/​1365-2656.​12078 CrossRef PubMed
    Kruse PD, Toft S, Sunderland KD (2008) Temperature and prey capture: opposite relationships in two predator taxa. Ecol Entomol 33:305–312. doi:10.​1111/​j.​1365-2311.​2007.​00978.​x CrossRef
    Krylov PI (1988) Predation of the freshwater cyclopoid copepod Megacyclops gigas on lake zooplankton functional response and prey selection. Arch Für Hydrobiol 113:231–250
    Kumar R, Ramakrishna Rao T (2003) Predation on mosquito larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the presence of alternate prey. Int Rev Hydrobiol 88:570–581. doi:10.​1002/​iroh.​200310631 CrossRef
    McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798. doi:10.​1038/​27427 CrossRef
    McCoy MW, Bolker BM, Warkentin KM, Vonesh JR (2011) Predicting predation through prey ontogeny using size-dependent functional response models. Am Nat 177:752–766. doi:10.​1086/​659950 CrossRef PubMed
    Muschiol D, Marković M, Threis I, Traunspurger W (2008) Predator–prey relationship between the cyclopoid copepod Diacyclops bicuspidatus and a free-living bacterivorous nematode. Nematology 10:55–62. doi:10.​1163/​1568541087833602​03 CrossRef
    Novak M, Wootton JT (2010) Using experimental indices to quantify the strength of species interactions. Oikos 119:1057–1063. doi:10.​1111/​j.​1600-0706.​2009.​18147.​x CrossRef
    Novich RA, Erickson EK, Kalinoski RM, DeLong JP (2014) The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5(10):art137. doi:10.​1890/​ES14-00216.​1 CrossRef
    Paine RT (1980) Food webs: linkage, interaction strength and community infrastructure. J Anim Ecol 49:666–685. doi:10.​2307/​4220 CrossRef
    Pawar S, Dell AI, Savage VM (2012) Dimensionality of consumer search space drives trophic interaction strengths. Nature 486:485–489. doi:10.​1038/​nature11131 PubMed
    Petchey O, Beckerman A, Riede J, Warren P (2008) Size, foraging, and food web structure. Proc Natl Acad Sci USA 105:4191–4196
    Plaβmann T, Maier G, Stich HB (1997) Predation impact of Cyclops vicinus on the rotifer community in Lake Constance in spring. J Plankton Res 19:1069–1079. doi:10.​1093/​plankt/​19.​8.​1069 CrossRef
    Rabette C, Thouvenot A, Lair N (1998) Laboratory experiments on trophic relationships and remote detection between two ciliates and Cyclops vicinus vicinus. Hydrobiologia 373–374:157–167. doi:10.​1023/​A:​1017001725062 CrossRef
    Rall BC, Kalinkat G, Ott D et al (2011) Taxonomic versus allometric constraints on non-linear interaction strengths. Oikos 120:483–492. doi:10.​1111/​j.​1600-0706.​2010.​18860.​x CrossRef
    Rall BC, Brose U, Hartvig M et al (2012) Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc B Biol Sci 367:2923–2934. doi:10.​1098/​rstb.​2012.​0242 CrossRef
    Rao TR, Kumar R (2002) Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat Ecol 36:411–424CrossRef
    Roche K (1990) Prey features affecting ingestion rates by Acanthocyclops robustus (Copepoda: Cyclopoida) on zooplankton. Oecologia 83:76–82. doi:10.​1007/​BF00324637 CrossRef
    Rogers D (1972) Random search and insect population models. J Anim Ecol 41:369–383. doi:10.​2307/​3474 CrossRef
    Rosenzweig M (1971) Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385–387. doi:10.​1126/​science.​171.​3969.​385 CrossRef PubMed
    Sarma SSS, Jiménez-Contreras J, Fernández R et al (2013) Functional responses and feeding rates of Mesocyclops pehpeiensis Hu (Copepoda) fed different diets (rotifers, cladocerans, alga and cyanobacteria). J Nat Hist 47:841–852. doi:10.​1080/​00222933.​2012.​747636 CrossRef
    Sentis A, Hemptinne J-L, Brodeur J (2012) Using functional response modeling to investigate the effect of temperature on predator feeding rate and energetic efficiency. Oecologia 169:1117–1125. doi:10.​1007/​s00442-012-2255-6 CrossRef PubMed
    Stemberger RS (1985) Prey selection by the copepod Diacyclops thomasi. Oecologia 65:492–497. doi:10.​1007/​BF00379662 CrossRef
    Van den Bosch F, Santer B (1993) Cannibalism in Cyclops abyssorum. Oikos 67:19–28. doi:10.​2307/​3545091 CrossRef
    Vucic-Pestic O, Rall BC, Kalinkat G, Brose U (2010) Allometric functional response model: body masses constrain interaction strengths. J Anim Ecol 79:249–256. doi:10.​1111/​j.​1365-2656.​2009.​01622.​x CrossRef PubMed
    Wickham SA (1995) Cyclops predation on ciliates: species.specific differences and functional responses. J Plankton Res 17:1633–1646. doi:10.​1093/​plankt/​17.​8.​1633 CrossRef
    Wiujamson CE (1984) Laboratory and field experiments on the feeding ecology of the cyclopoid copepod, Mesocyclops edax. Freshw Biol 14:575–585. doi:10.​1111/​j.​1365-2427.​1984.​tb00177.​x CrossRef
    Yodzis P, Innes S (1992) Body size and consumer–resource dynamics. Am Nat 139:1151–1175
  • 作者单位:Ryan M. Kalinoski (1) (2)
    John P. DeLong (3)

    1. College of Arts and Sciences, University of St. Francis, Joliet, IL, 60453, USA
    2. Graduate School of Biological Sciences, Eastern Illinois University, Charleston, IL, 61920, USA
    3. School of Biological Sciences, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Plant Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1939
文摘
Understanding the factors that determine the strength of predator–prey interactions is essential to understanding community structure and stability. Variation in the strength of predator–prey interactions often can be attributed to predator mass and prey mass, or abiotic factors like temperature. However, even when accounting for these factors, there remains a considerable amount of unexplained variation that may be attributed to other traits. We compiled functional response data from the literature to investigate how predator mass, prey mass, prey type (taxonomic identity), temperature, and prey defenses (hard vs soft integument) contributed to the variation found in the predator–prey interactions between freshwater cyclopoid copepods and their prey. Surprisingly, our results indicate that prey identity (taxonomic group) and defenses (hard vs soft integument) are more important for generating variation in interaction strengths than body mass and temperature. This suggests that allometric functions can only take us so far when attempting to better understand variation in individual predator prey interactions, and that we must evaluate how other traits influence interaction strengths. Identifying additional factors such as prey defenses may enable us to better predict potential changes in the structure and function of planktonic and other food webs by better accounting for the variation in the interactions between generalists and their many prey types. Keywords Handling time Area of capture Interaction strength Copepods Allometry Trait-based ecology

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700