How phylogeny shapes the taxonomic and functional structure of plant–insect networks
详细信息    查看全文
  • 作者:Sébastien Ibanez ; Fabien Arène ; Sébastien Lavergne
  • 关键词:Plant–pollinator ; Plant–herbivore ; Phylogenetic signal ; Functional niche ; Taxonomic niche
  • 刊名:Oecologia
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:180
  • 期:4
  • 页码:989-1000
  • 全文大小:866 KB
  • 参考文献:Alarcón R, Waser NM, Ollerton J (2008) Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117:1796–1807CrossRef
    Aranwela N, Sanson G, Read J (1999) Methods of assessing leaf-fracture properties. New Phytol 144:369–383CrossRef
    Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593
    Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745CrossRef PubMed
    Blüthgen N, Fründ J, Vázquez DP, Menzel F (2008) What do interaction network metrics tell us about specialization and biological traits. Ecology 89:3387–3399CrossRef PubMed
    Bolnick DI, Yang LH, Fordyce JA et al (2002) Measuring individual-level resource specialization. Ecology 83:2936–2941CrossRef
    Brose U, Jonsson T, Berlow EL et al (2006) Consumer-resource body-size relationships in natural food webs. Ecology 87:2411–2417CrossRef PubMed
    Cadotte M, Albert CH, Walker SC (2013) The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol Lett 16:1234–1244CrossRef PubMed
    Chacoff NP, Vázquez DP, Lomáscolo SB et al (2012) Evaluating sampling completeness in a desert plant–pollinator network: sampling a plant–pollinator network. J Anim Ecol 81:190–200. doi:10.​1111/​j.​1365-2656.​2011.​01883.​x CrossRef PubMed
    Chalmandrier L, Münkemüller T, Lavergne S, Thuiller W (2015) Effects of species’ similarity and dominance on the functional and phylogenetic structure of a plant meta-community. Ecology 96(1):143–153
    Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253CrossRef
    Clissold FJ (2007) The biomechanics of chewing and plant fracture: mechanisms and implications. Adv Insect Physiol 34:317–372CrossRef
    Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRef
    Cornwell WK, Westoby M, Falster DS et al (2014) Functional distinctiveness of major plant lineages. J Ecol 102:345–356CrossRef
    Danforth BN, Sipes S, Fang J, Brady SG (2006) The history of early bee diversification based on five genes plus morphology. Proc Natl Acad Sci USA 103:15118–15123. doi:10.​1073/​pnas.​0604033103 CrossRef PubMed PubMedCentral
    Dehling DM, Töpfer T, Schaefer HM et al (2014) Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Glob Ecol Biogeogr 23:1085–1093CrossRef
    Devoto M, Bailey S, Craze P, Memmott J (2012) Understanding and planning ecological restoration of plant–pollinator networks. Ecol Lett 15:319–328. doi:10.​1111/​j.​1461-0248.​2012.​01740.​x CrossRef PubMed
    Díaz-Castelazo C, Guimarães PR Jr, Jordano P et al (2010) Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology 91:793–801CrossRef PubMed
    Dupont YL, Padrón B, Olesen JM, Petanidou T (2009) Spatio-temporal variation in the structure of pollination networks. Oikos 118:1261–1269CrossRef
    Eklöf A, Helmus MR, Moore M, Allesina S (2012) Relevance of evolutionary history for food web structure. Proc R Soc B Biol Sci 279:1588–1596. doi:10.​1098/​rspb.​2011.​2149 CrossRef
    Elton CS (1927) Animal ecology. University of Chicago Press, Chicago
    Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403
    Gerhold P, Cahill JF, Winter M et al (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct Ecol 29:600–614. doi:10.​1111/​1365-2435.​12425
    Gómez JM, Verdú M, Perfectti F (2010) Ecological interactions are evolutionarily conserved across the entire tree of life. Nature 465:918–921. doi:10.​1038/​nature09113 CrossRef PubMed
    Gong Y-B, Huang S-Q (2011) Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia 166:671–680. doi:10.​1007/​s00442-011-1910-7 CrossRef PubMed
    Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRef PubMed
    Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B Biol Sci 326:119–157
    Guimaraes PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885CrossRef PubMed
    Hadfield JD, Krasnov BR, Poulin R, Nakagawa S (2014) A tale of two phylogenies: comparative analyses of ecological interactions. Am Nat 183:174–187CrossRef PubMed
    Hedges SB, Kumar S (2009) The timetree of life. Oxford University Press, Oxford
    Heleno R, Garcia C, Jordano P et al (2014) Ecological networks: delving into the architecture of biodiversity. Biol Lett 10:20131000. doi:10.​1098/​rsbl.​2013.​1000 CrossRef PubMed PubMedCentral
    Honek A, Martinkova Z, Saska P, Pekar S (2007) Size and taxonomic constraints determine the seed preferences of Carabidae (Coleoptera). Basic Appl Ecol 8:343–353CrossRef
    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton
    Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916CrossRef PubMed
    Ibanez S (2012) Optimizing size thresholds in a plant–pollinator interaction web: towards a mechanistic understanding of ecological networks. Oecologia 170:233–242CrossRef PubMed
    Ibanez S, Lavorel S, Puijalon S, Moretti M (2013a) Herbivory mediated by coupling between biomechanical traits of plants and grasshoppers. Funct Ecol 27:479–489. doi:10.​1111/​1365-2435.​12058 CrossRef
    Ibanez S, Manneville O, Miquel C et al (2013b) Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia 173:1459–1470. doi:10.​1007/​s00442-013-2738-0 CrossRef PubMed
    Ings TC, Montoya JM, Bascompte J et al (2009) Review: ecological networks—beyond food webs. J Anim Ecol 78:253–269CrossRef PubMed
    Ives AR, Godfray HCJ (2006) Phylogenetic analysis of trophic associations. Am Nat 168:E1–E14. doi:10.​1086/​an.​2006.​168.​issue-1 CrossRef PubMed
    Jacquemyn H, Merckx V, Brys R et al (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528. doi:10.​1111/​j.​1469-8137.​2011.​03796.​x CrossRef PubMed
    Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103CrossRef PubMed
    Junker RR, Blüthgen N, Brehm T et al (2013) Specialization on traits as basis for the niche
    eadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol 27:329–341CrossRef
    Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRef PubMed
    Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283. doi:10.​1086/​519400 CrossRef PubMed
    Krasnov BR, Fortuna MA, Mouillot D et al (2012) Phylogenetic signal in module composition and species connectivity in compartmentalized host–parasite networks. Am Nat 179:501–511CrossRef PubMed
    Kutty SN, Pape T, Wiegmann BM, Meier R (2010) Molecular phylogeny of the Calyptratae (Diptera: Cyclorrhapha) with an emphasis on the superfamily Oestroidea and the position of Mystacinobiidae and McAlpine’s fly. Syst Entomol 35:614–635. doi:10.​1111/​j.​1365-3113.​2010.​00536.​x CrossRef
    Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350CrossRef
    Lavorel S, Grigulis K, McIntyre S et al (2008) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147. doi:10.​1111/​j.​1365-2435.​2007.​01339.​x
    Lázaro A, Nielsen A, Totland Ø (2010) Factors related to the inter-annual variation in plants’ pollination generalization levels within a community. Oikos 119:825–834. doi:10.​1111/​j.​1600-0706.​2009.​18017.​x CrossRef
    Maddison DR, Schulz K-S, Maddison WP (2007) The tree of life web project. Zootaxa 1668:19–40
    Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295. doi:10.​1126/​science.​1232392 CrossRef PubMed
    Martinez ND, Hawkins BA, Dawah HA, Feifarek BP (1999) Effects of sampling effort on characterization of food-web structure. Ecology 80:1044–1055CrossRef
    Minoarivelo HO, Hui C, Terblanche JS et al (2014) Detecting phylogenetic signal in mutualistic interaction networks using a Markov process model. Oikos 123:1250–1260. doi:10.​1111/​oik.​00857 CrossRef PubMed PubMedCentral
    Mouquet N, Devictor V, Meynard CN et al (2012) Ecophylogenetics: advances and perspectives. Biol Rev 87:769–785CrossRef PubMed
    Münkemüller T, Lavergne S, Bzeznik B et al (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756CrossRef
    Nuismer SL, Harmon LJ (2015) Predicting rates of interspecific interaction from phylogenetic trees. Ecol Lett 18:17–27. doi:10.​1111/​ele.​12384 CrossRef PubMed
    Pagel M (1997) Inferring evolutionary processes from phylogenies. Zool Scr 26:331–348CrossRef
    Pellissier L, Pradervand J-N, Williams PH et al (2013) Phylogenetic relatedness and proboscis length contribute to structuring bumblebee communities in the extremes of abiotic and biotic gradients. Glob Ecol Biogeogr 22:577–585. doi:10.​1111/​geb.​12026 CrossRef
    Pennell MW, Eastman JM, Slater GJ, et al (2014) Geiger v2. 0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30(15):2216–2218
    Pérez-Harguindeguy N, Díaz S, Vendramini F et al (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650CrossRef
    Petanidou T, Kallimanis AS, Tzanopoulos J et al (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575CrossRef PubMed
    Pillar VD, Duarte LDS (2010) A framework for metacommunity analysis of phylogenetic structure. Ecol Lett 13:587–596. doi:10.​1111/​j.​1461-0248.​2010.​01456.​x CrossRef PubMed
    Polidori C, Santoro D, Tormos J, Asís JD (2011) Individual prey specialization in wasps: predator size is a weak predictor of taxonomic niche width and niche overlap. In: Polidori C (ed) Predation in the Hymenoptera: an evolutionary perspective. Transworld Research Network, Kerala, pp 101–122
    Rafferty NE, Ives AR (2013) Phylogenetic trait-based analyses of ecological networks. Ecology 94:2321–2333. doi:10.​1890/​12-1948.​1 CrossRef PubMed PubMedCentral
    R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
    Revell LJ (2009) Size-correction and principal components for interspecific comparative studies. Evolution 63:3258–3268CrossRef PubMed
    Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223CrossRef
    Rezende EL, Jordano P, Bascompte J (2007a) Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116:1919–1929. doi:10.​1111/​j.​0030-1299.​2007.​16029.​x CrossRef
    Rezende EL, Lavabre JE, Guimarães PR et al (2007b) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928CrossRef PubMed
    Rezende EL, Albert EM, Fortuna MA, Bascompte J (2009) Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol Lett 12:779–788. doi:10.​1111/​j.​1461-0248.​2009.​01327.​x CrossRef PubMed
    Rohr RP, Bascompte J (2014) Components of phylogenetic signal in antagonistic and mutualistic networks. Am Nat 184:556–564CrossRef PubMed
    Roquet C, Thuiller W, Lavergne S (2013) Building megaphylogenies for macroecology: taking up the challenge. Ecography 36:013–026CrossRef
    Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162. doi:10.​1034/​j.​1600-0706.​2002.​980116.​x CrossRef
    Rowell CHF, Flook PK (1998) Phylogeny of the Caelifera and the Orthoptera as derived from ribosomal gene sequences. J Orthoptera Res 7:147–156
    Sanson G, Read J, Aranwela N et al (2001) Measurement of leaf biomechanical properties in studies of herbivory: opportunities, problems and procedures. Austral Ecol 26:535–546CrossRef
    Schleuning M, Ingmann L, Strauß R et al (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463. doi:10.​1111/​ele.​12245 CrossRef PubMed
    Schmitt RJ, Coyer JA (1982) The foraging ecology of sympatric marine fish in the genus Embiotoca (Embiotocidae): importance of foraging behavior in prey size selection. Oecologia 55:369–378CrossRef
    Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429CrossRef PubMed
    Srivastava DS, Cadotte MW, MacDonald AAM et al (2012) Phylogenetic diversity and the functioning of ecosystems. Ecol Lett 15:637–648CrossRef PubMed
    Stahls G, Hippa H, Rotheray G et al (2003) Phylogeny of Syrphidae (Diptera) inferred from combined analysis of molecular and morphological characters. Syst Entomol 28:433–450CrossRef
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRef PubMed
    Stang M, Klinkhamer PG, Van Der Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112:111–121CrossRef
    Thuiller W, Gallien L, Boulangeat I et al (2010) Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers Distrib 16:461–475CrossRef
    Thuiller W, Guéguen M, Georges D et al (2014) Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography (Cop.) 37:1254–1266
    Vacher C, Piou D, Desprez-Loustau M-L (2008) Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS One 3:e1740. doi:10.​1371/​journal.​pone.​0001740 CrossRef PubMed PubMedCentral
    Vacher C, Daudin J-J, Piou D, Desprez-Loustau M-L (2010) Ecological integration of alien species into a tree-parasitic fungus network. Biol Invasions 12:3249–3259. doi:10.​1007/​s10530-010-9719-6 CrossRef
    Vázquez DP, Aizen MA (2003) Null model analyses of specialization in plant–pollinator interactions. Ecology 84:2493–2501CrossRef
    Vázquez DP, Chacoff NP, Cagnolo L (2009) Evaluating multiple determinants of the structure of plant-animal mutualistic networks. Ecology 90:2039–2046CrossRef PubMed
    Vedenina V, Mugue N (2011) Speciation in gomphocerine grasshoppers: molecular phylogeny versus bioacoustics and courtship behavior. J Orthoptera Res 20:109–125CrossRef
    Verdú M, Valiente-Banuet A (2011) The relative contribution of abundance and phylogeny to the structure of plant facilitation networks. Oikos 120:1351–1356. doi:10.​1111/​j.​1600-0706.​2011.​19477.​x CrossRef
    Verdú M, Gómez-Aparicio L, Valiente-Banuet A (2011) Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proc R Soc Lond B 268:2211–2220. doi:10.​1098/​rspb.​2011.​2268
    Violle C, Navas M-L, Vile D et al (2007) Let the concept of trait be functional! Oikos 116:882–892CrossRef
    Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100CrossRef PubMed
    Westneat MW (2003) A biomechanical model for analysis of muscle force, power output and lower jaw motion in fishes. J Theor Biol 223:269–281CrossRef PubMed
    Whittaker RH, Levin SA, Root RB (1973) Niche, habitat, and ecotope. Am Nat 107:321–338
    Wiens JA, Rotenberry JT (1979) Diet niche relationships among North American grassland and shrubsteppe birds. Oecologia 42:253–292CrossRef
    Zanne AE, Tank DC, Cornwell WK et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92. doi:10.​1038/​nature12872 CrossRef PubMed
  • 作者单位:Sébastien Ibanez (1)
    Fabien Arène (2)
    Sébastien Lavergne (2)

    1. Laboratoire d’Écologie Alpine (LECA), UMR 5553, CNRS/Université de Savoie, 73000, Chambéry, France
    2. Laboratoire d’Écologie Alpine (LECA), UMR 5553, CNRS/Université Grenoble Alpes, 38000, Grenoble, France
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Plant Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1939
文摘
Phylogenetically related species share a common evolutionary history and may therefore have similar traits. In terms of interaction networks, where traits are a major determinant, related species should therefore interact with other species which are also related. However, this prediction is challenged by current evidence that there is a weak, albeit significant, phylogenetic signal in species’ taxonomic niche, i.e., the identity of interacting species. We studied mutualistic and antagonistic plant–insect interaction networks in species-rich alpine meadows and show that there is instead a very strong phylogenetic signal in species’ functional niches—i.e., the mean functional traits of their interactors. This pattern emerges because related species tend to interact with species bearing certain traits that allow biotic interactions (pollination, herbivory) but not necessarily with species from all the same evolutionary lineages. Those traits define a set of potential interactors and show clear patterns of phylogenetic clustering on several portions of plants and insect phylogenies. Thus, this emerging pattern of low phylogenetic signal in taxonomic niches but high phylogenetic signal in functional niches may be driven by the interplay between functional trait convergence across plants’ and insects’ phylogenies and random sampling of the potential interactors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700