Effects of Iron-Rich Intermetallics and Grain Structure on Semisolid Tensile Properties of Al-Cu 206 Cast Alloys near Solidus Temperature
详细信息    查看全文
  • 作者:Amir Bolouri ; Kun Liu ; X.-Grant Chen
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:47
  • 期:12
  • 页码:6466-6480
  • 全文大小:3,683 KB
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
  • 卷排序:47
文摘
The effects of iron-rich intermetallics and grain size on the semisolid tensile properties of Al-Cu 206 cast alloys near the solidus were evaluated in relation to the mush microstructure. Analyses of the stress–displacement curves showed that the damage expanded faster in the mush structure dominated by plate-like β-Fe compared to the mush structure dominated by Chinese script-like α-Fe. While there was no evidence of void formation on the β-Fe intermetallics, they blocked the interdendritic liquid channels and thus hindered liquid flow and feeding during semisolid deformation. In contrast, the interdendritic liquid flows more freely within the mush structure containing α-Fe. The tensile properties of the alloy containing α-Fe are generally higher than those containing β-Fe over the crucial liquid fraction range of ~0.6 to 2.8 pct, indicating that the latter alloy may be more susceptible to stress-related casting defects such as hot tearing. A comparison of the semisolid tensile properties of the alloy containing α-Fe with different grain sizes showed that the maximum stress and elongation of the alloy with finer grains were moderately higher for the liquid fractions of ~2.2 to 3.6 pct. The application of semisolid tensile properties for the evaluation of the hot tearing susceptibility of experimental alloys is discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700