Matching global cobalt demand under different scenarios for co-production and mining attractiveness
详细信息    查看全文
  • 作者:Alexandre Tisserant ; Stefan Pauliuk
  • 关键词:Cobalt ; Copper ; Nickel ; Scenario analysis ; Critical metals ; Dynamic input–output analysis ; Hybrid multiregional input–output model ; Companion metals ; By ; product
  • 刊名:Journal of Economic Structures
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:5
  • 期:1
  • 全文大小:1,612 KB
  • 参考文献:Busch J, Steinberger JK, Dawson DA, Purnell P, Roelich KE (2014) Managing critical materials with a technology- specific stocks and flows model. Environ Sci Technol 48(2):1298–1305CrossRef
    Cervantes M, Green KP, Wilson A (2014) Survey of Mining Companies: 2013/2014. http://​www.​fraserinstitute.​org/​research-news/​display.​aspx?​id=​20902
    Duchin F (2005) A world trade model based on comparative advantage with m regions, n goods, and k factors. Econ Syst Res 17(2):141–162. http://​www.​tandfonline.​com/​doi/​abs/​10.​1080/​0953531050011490​3\nhttp://​www.​tandfonline.​com/​doi/​abs/​10.​1080/​0953531050011490​3#.​Us1XbbTn6So\nhttp://​www.​tandfonline.​com/​doi/​pdf/​10.​1080/​0953531050011490​3
    Duchin F, Stephen SH (2015) Sustainable use of global resources: combining multiregional input-output analysis with a world trade model for evaluating scenarios. part 2: implementation. J Ind Ecol 00:1–9
    Duchin F, Stephen SH, Strømman AH (2015) Sustainable use of global resources: combining multiregional input-output analysis with a world trade model for evaluating scenarios. part 1: conceptual framework. J Ind Ecol 00:1–8
    Elshkaki A, Graedel TE (2013) Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J Clean Prod 59:260–273CrossRef
    Elshkaki A, Graedel TE (2014) Dysprosium, the balance problem, and wind power technology. Appl Energy 136:548–559CrossRef
    EU DESIRE Project. 2013. EU DESIRE Project
    EuropeanCommission (2010) Critical raw materials for the EU, report of the Ad hoc working group on defining critical raw materials. Eucom 39(July):1–84
    Frenzel M, Tolosana-Delgado R, Gutzmer J (2015) Assessing the supply potential of high-tech metals – a general method. Res Policy 46:45–58. http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S030142071500078​1
    Gerling JP, Wellmer F, Gerling JP (2004) Raw material availability—with a focus on fossil energy resources. World Min—Surf Undergr 56(4):254–262
    Gibon T, Wood R, Arvesen A, Bergesen JD, Suh S, Hertwich EG (2015) A methodology for integrated, multiregional life cycle assessment scenarios under large-scale technological change. Environ Sci Technol 49(18):11218–11226. http://​pubs.​acs.​org/​doi/​10.​1021/​acs.​est.​5b01558
    Graedel TE, Allwood J, Birat JP, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011) What do we know about metal recycling rates? J Ind Ecol 15(3):355–366. http://​doi.​wiley.​com/​10.​1111/​j.​1530-9290.​2011.​00342.​x
    Graedel TE, Reck BK (2015) Six years of criticality assessments: What have we learned so far? J Ind Ecol 00(0):n/a–n/a. http://​doi.​wiley.​com/​10.​1111/​jiec.​12305
    Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E et al (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070CrossRef
    Greenfield A, Graedel TE (2013) The omnivorous diet of modern technology. Resour Conserv Recycl 74:1–7CrossRef
    Harper EM, Kavlak G, Graedel TE (2012) Tracking the metal of the goblins: cobalt’s cycle of use. Environ Sci Technol 46(2):1079–1086CrossRef
    Hatayama H, Daigo I, Matsuno Y, Adachi Y (2010) Outlook of the world steel cycle based on the stock and flow dynamics. Environ Sci Technol 44(16):6457–6463CrossRef
    Hawkins T, Hendrickson C, Higgins C, Matthews HS, Suh S (2007) A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environ Sci Technol 41(3):1024–1031CrossRef
    Hertwich EG, Gibon T, Bouman EA, Arvesen A, Suh S, Heath GA, Bergesen JD, Ramirez A, Vega MI, Shi L (2015) Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc Natl Acad Sci USA 112(20):6277–6282. http://​www.​pnas.​org/​lookup/​doi/​10.​1073/​pnas.​1312753111
    IPCC (2014) Mitigation of climate change: the working group III (WGIII) contribution to the Fifth Assessment Report on mitigation of climate change. Switzerland, Geneva
    Kagawa S, Nakamura S, Kondo Y, Matsubae K, Nagasaka T (2015) Forecasting replacement demand of durable goods and the induced secondary material flows. J Ind Ecol 19(1):10–19CrossRef
    Knoeri C, Wäger PA, Stamp A, Althaus HJ, Weil M (2013) Towards a dynamic assessment of raw materials criticality: linking agent-based demand—with material flow supply modelling approaches. Sci Total Environ 461–462:808–812CrossRef
    de Koning A, Huppes G, Deetman S, Tukker A (2015) Scenarios for a 2°C world: a trade-linked input–output model with high sector detail. Climate Policy 3062(December):1–17. http://​www.​tandfonline.​com/​doi/​abs/​10.​1080/​14693062.​2014.​999224
    Leontief W, Duchin F (1986) The Future Impact of Automation on Workers. Oxford University Press, New York
    Liu G, Bangs CE, Müller DB (2012) Stock dynamics and emission pathways of the global aluminium cycle. Nat Clim Change 2(10):1–5
    Løvik AN, Restrepo E, Müller DB (2015) The global anthropogenic Gallium system: determinants of demand, supply and efficiency improvements. Environ Sci Technol 49(9):5704–5712. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25884251
    Miller RE, Blair PD (2009). Input-Output Analysis—Foundations and Extensions. 2nd ed. Cambridge University Press
    Moran D, McBain D, Kanemoto K, Lenzen M, Geschke A (2014) Global supply chains of coltan a hybrid life cycle assessment study using a social indicator. J Ind Ecol 00:1–9
    Morrow JD, Siverson RM, Tabares TE, Stanford JDM (1998) The political determinants of internation trade: the major powers. Am Political Sci Rev 92(3):649–661CrossRef
    Morrow JD, Siverson RM, Tabares TE (1999) Correction to “the political determinants of international trade”. Am Political Sci Rev 93(4):931–933CrossRef
    Mudd G, Weng Z, Jowitt S, Turnbull ID, Graedel TE (2013b) Quantifying the recoverable resources of by-product metals: the case of cobalt. Ore Geol Rev 55(C):87–98. http://​dx.​doi.​org/​10.​1016/​j.​oregeorev.​2013.​04.​010
    Mudd G, Jowitt S (2014) A detailed assessment of global Ni resource trends and endowments. Econ Geol 109:1813–1841CrossRef
    Mudd G, Weng Z, Jowitt S (2013) A detailed assessment of global Cu resource trends and endowments. Econ Geol 108:1163–1183CrossRef
    Nakajima K, Ohno H, Kondo Y, Matsubae K, Takeda O, Miki T, Nakamura S, Nagasaka T (2013) Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis. Environ Sci Technol 47(9):4653–4660CrossRef
    Nakamura S, Murakami S, Nakajima K, Nagasaka T (2008) Hybrid input-output approach to metal production and its application to the introduction of lead-free solders. Environ Sci Technol 42(10):3843–3848CrossRef
    Nakamura S, Kondo Y, Kagawa S, Matsubae K, Nakajima K, Nagasaka T (2014) MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ Sci Technol 48(13):7207–7214CrossRef
    Nansai K, Nakajima K, Kagawa S, Kondo Y, Suh S, Shigetomi Y, Oshita Y (2014) Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum. Environ Sci Technol 48(3):1391–1400CrossRef
    Northey S, Mohr S, Mudd G, Weng Z, Giurco D (2014) Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 83:190–201. doi:10.​1016/​j.​resconrec.​2013.​10.​005 CrossRef
    Nuss P, Harper EM, Nassar NT, Reck BK, Graedel TE (2014) Criticality of iron and its principal alloying elements. Environ Sci Technol 48(7):4171–4177CrossRef
    OECD (2015) GDP long-term forecast. OECD. https://​data.​oecd.​org/​gdp/​gdp-long-term-forecast.​htm . Accessed November 3, 2015
    Ohno H, Matsubae K, Nakajima K, Nakamura S, Nagasaka T (2014) Unintentional flow of alloying elements in steel during recycling of end-of-life vehicles. J Ind Ecol 18(2):242–253CrossRef
    Pauliuk S, Hertwich EG (2015) Prospective models of society’s future metabolism—what industrial ecology has to contribute. In: Roland C, Angela D (ed) Taking stock of industrial ecology. Springer, Dordrecht, In press
    Pauliuk S, Milford RL, Müller DB, Allwood J (2013) The steel scrap age. Environ Sci Technol 47(7):3448–3454
    Peiró LT, Méndez GV, Ayres RU (2013) Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ Sci Technol 47(6):2939–2947CrossRef
    Pollins BM (1989) Conflict, cooperation and commerce: the effect of international political interactions on bilateral trade flows. Am J Polit Sci 33(3):737–761CrossRef
    Prior T, Giurco D, Mudd G, Mason L, Behrisch J (2012) Resource depletion, peak minerals and the implications for sustainable resource management. Glob Environ Change 22(3):577–587CrossRef
    Roelich KE, Dawson DA, Purnell P, Knoeri C, Revell R, Busch J, Steinberger JK (2014) Assessing the dynamic material criticality of infrastructure transitions: a case of low carbon electricity. Appl Energy 123:378–386CrossRef
    Roskill (2014) A 2014 Roskill report Cobalt : Market Outlook to 201. Cobalt
    Securities and Exchange Commission (2012) 17 CFR Parts 240 and 249b. http://​www.​sec.​gov/​rules/​final/​2012/​34-67716.​pdf
    Seddon M (2001) The cobalt market—current volatility versus future stability? Appl Earth Sci 110(2):71–74CrossRef
    Shigetomi Y, Nansai K, Kagawa S, Tohno S (2015) Trends in Japanese households’ critical-metals material footprints. Ecol Econ 119: 118–126. http://​linkinghub.​elsevier.​com/​retrieve/​pii/​S092180091500346​8
    Srivastava RK, Green RT (1986) Determinants of bilateral trade flows. J Bus 59(4):623–640CrossRef
    Strømman AH, Duchin F (2006) A world trade model with bilateral trade based on comparative advantage. Econ Syst Res 18(3):281–297. http://​www.​scopus.​com/​inward/​record.​url?​eid=​2-s2.​0-33748112791&​partnerID=​40\nhttp://​pdfserve.​informaworld.​com/​877850_​751305627_​755220960.​pdf
    Tinbergen J (1962) Shaping the World Economy; Suggestions for an International Economic Policy. Twentieth Century Fund, New York
    Tukker A, Dietzenbacher E (2013) Global multiregional input–output frameworks: an introduction and outlook. Econ Syst Res 25(1):1–19. http://​www.​tandfonline.​com/​doi/​abs/​10.​1080/​09535314.​2012.​761179
    Umana Dajud C (2013) Political Proximity and International Trade. Econ Pol 25(3):n/a–n/a
    USGS (2014) Minerals Yearbook Cobalt - 2012
    Wood R, Stadler K, Bulavskaya T, Lutter S, Giljum S, de Koning A, Kuenen J et al (2014) Global sustainability accounting—developing exiobase for multi-regional footprint analysis. Sustainability 7(1):138–163CrossRef
    World Bank (2015) GDP (current US$). World Bank. http://​databank.​worldbank.​org/​data/​reports.​aspx?​source=​2&​type=​metadata&​series=​NY.​GDP.​MKTP.​CD . Accessed 3 Nov 2015
    Zuser A, Rechberger H (2011) Considerations of resource availability in technology development strategies: the case study of photovoltaics. Resour Conserv Recycl 56(1):56–65CrossRef
  • 作者单位:Alexandre Tisserant (1)
    Stefan Pauliuk (2)

    1. Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
    2. Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
  • 刊物主题:Economics general; Business/Management Science, general; Engineering, general; Statistics, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2193-2409
文摘
Many new and efficient technologies require ‘critical metals’ to function. These metals are often extracted as by-product of another metal, and their future supply is therefore dependent on mining developments of the host metal. Supply of critical metals can also be constrained because of political instability, discouraging mining policies, or trade restrictions. Scenario analyses of future metal supply that take these factors into account would provide policy makers with information about possible supply shortages. We provide a scenario analysis for demand and supply of cobalt, a potentially critical metal mainly used not only in high performance alloys but also in lithium-ion batteries and catalysts. Cobalt is mainly extracted as by-product of copper and nickel. A multiregional input–output (MRIO) model for 20 world regions and 163 commodities was built from the EXIOBASE v2.2.0 multiregional supply and use table with the commodity technology construct. This MRIO model was hybridized by disaggregating cobalt flows from the nonferrous metal sector. Future cobalt demand in different world regions from 2007 to 2050 was then estimated, assuming region- and sector-specific GDP growth, constant technology, and constant background import shares. A dynamic stock model of regional reserves for seven different types of copper, cobalt, and nickel resources, augmented with optimization-based region-specific mining capacity estimates, was used to determine future cobalt supply. The investment attractiveness index developed by the Fraser Institute specifically for mining industry entered the optimization routine as a measure of the regional attractiveness of mining. The baseline scenario shows no cobalt supply constraints over the considered time period 2007–2050, and recovering about 60 % of cobalt content of the copper and nickel ore flows would be sufficient to match global cobalt demand. When simulating a hypothetical sudden supply dropout in Africa during the period 2020–2035, we found that shortages in cobalt supply might occur in such scenarios. Keywords Cobalt Copper Nickel Scenario analysis Critical metals Dynamic input–output analysis Hybrid multiregional input–output model Companion metals By-product

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700