Impacts of Advanced Oxidation Processes on Microbiomes During Wastewater Treatment
详细信息    查看全文
  • 关键词:Antibiotic ; resistant bacteria ; Ozone treatment ; Photo ; Fenton treatment ; TiO2 photocatalysis ; UV ; light ; Wastewater reuse
  • 刊名:The Handbook of Environmental Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:45
  • 期:1
  • 页码:129-144
  • 全文大小:174 KB
  • 参考文献:1.Zhang L, Liu Z (1989) A methodological research on environmental impact assessment of sewage irrigation region. Chi Environ Sci 9:298–303
    2.Toze S (2006) Reuse of effluent water—benefits and risks. Agr Water Manage 80:140–159CrossRef
    3.Kiziloglu F, Tuean M, Sahin U, Angin I, Anapali O, Okuroglu M. (2007) Effects of wastewater irrigation on soil and cabbage-plant (Brassica olereacea var. capitate cv. Yavola-1) chemical properties. J Plant Nutr Soil Sci 170:166–172
    4.Schwartz T, Hoffmann S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and U.V. disinfection in a public drinking water distribution system. J Appl Microbiol 95(3):591–601CrossRef
    5.Czekalski N, Berthold T, Caucci S et al (2012) Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland. Front Microbiol 22:106
    6.Rizzo L, Manaia C, Merlin C et al (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360CrossRef
    7.Volkmann H, Schwartz T, Carmen S et al (2006) Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets. Mol Cell Probe 21(2):125–133CrossRef
    8.Germap 2012, Antibiotika-Resistenz und -Verbrauch, Bericht über Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der human- und Veterinärmedizin in Deutschland, http://​www.​bvl.​bund.​de/​SharedDocs/​Downloads/​05_​Tierarzneimittel​/​germap2012.​html;jsessionid=​B905EF1A1C481E43​91EEDD2869C7BB36​.​2_​cid340 .
    9.Hirsch R, Ternes T, Haberer K, Kratz K (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118CrossRef
    10.Le Minh N, Khan SJ, Drewes JE, Stuetz RM (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Res 44:4295–4323CrossRef
    11.Li J, Cheng W, Xu L et al (2015) Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ Sci Poll Res Int 22(6):4587–4596CrossRef
    12.Gilboa Y, Friedler E (2008) UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected microorganisms. Water Res 42:1043–1050CrossRef
    13.Davies J (2006) Are antibiotics naturally antibiotics. J Ind Microbiol Biotechnol 33(7):496–499CrossRef
    14.Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 17(3):311–320CrossRef
    15.Michael I, Rizzo L, McArdell CS et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47(3):957–995CrossRef
    16.Marti E, Huerta B, Rodríguez-Mozaz S et al (2014) Characterization of ciprofloxacin-resistant isolates from a wastewater treatment plant and its receiving river. Water Res 15:67–76CrossRef
    17.Hanjra MA, Blackwell J, Carr G et al (2012) Wastewater irrigation and environmental health: Implications for water governance and public policy. Int J Hyg Environ Health 215(3):255–269CrossRef
    18.Varela AR, Ferro G, Vredenburg J et al (2013) Vancomycin resistant enterococci: from the hospital effluent to the urban wastewater treatment plant. Sci Total Environ 450–451:155–161CrossRef
    19.Korzeniewska E, Korzeniewska A, Harnisz M (2013) Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotox Environ Safe 91:96–102CrossRef
    20.Feuerpfeil I, Lopez-Pila J, Schmidt R et al (1999) Antibiotikaresistenzen-Antibiotikaresistente Bakterien und Antibiotika in der Umwelt. Bundesgesundheitsblatt 42(1):37–50CrossRef
    21.Rahube TO, Marti R, Scott A et al (2014) Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Appl Environ Microbiol 80(22):6898–6907CrossRef
    22.Kim S, Aga DS (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health 10(8):559–573CrossRef
    23.Iwane T, Urase T, Yamamoto K (2001) Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci Technol 43(2):91–99
    24.Da Silva MF, Tiago I, Veríssimo A, Boaventura AR et al (2005) Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55(2):322–329CrossRef
    25.Ferreira da Silva M, Vaz-Moreira I, Gonzalez-Pajuelo M et al (2007) Antimicrobial resistance patterns in Enterobacteriaceae isolated from an urban wastewater treatment plant. FEMS Microbiol Ecol 60(1):166–176CrossRef
    26.Volkmann H, Schwartz T, Bischoff P et al (2004) Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). J Microbiol Meth 56:277–286CrossRef
    27.Szczepanowski R, Linke B, Krhan I et al (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiol 155:2306–2319CrossRef
    28.Du J, Ren H, Geng J et al (2014) Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. Environ Sci Poll Res Int 21(12):7276–7284CrossRef
    29.Shrivastava R, Upreti RK, Jain SR, Prasad KN, Seth PK, Chaturvedi UC (2004) Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol Environ Safety 58(2):277–283CrossRef
    30.Malato S, Fernández-Ibánez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRef
    31.Kraft S, Obst U, Schwartz T (2011) Immunological detection of UV induced cyclobutane pyrimidine dimers and (6–4) photoproducts in DNA from reference bacteria and natural aquatic populations. J Microbiol Meth 84(3):435–441CrossRef
    32.Jungfer C, Friedrich F, Varela Villarreal J et al (2013) Drinking water biofilms on copper and stainless steel exhibit specific molecular responses towards different disinfection regimes at waterworks. Biofouling 29(8):891–907CrossRef
    33.Jungfer C, Schwartz T, Obst U (2007) UV-induced dark repair mechanisms in bacteria associated with drinking water. Water Res 41(1):188–196CrossRef
    34.Süß J, Volz S, Obst U, Schwartz T (2009) Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection. Water Res 43(15):3705–3716CrossRef
    35.Hijnen WA, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22CrossRef
    36.Stohl EA, Brockman JP, Burkle KL et al (2003) Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem 278(4):2278–2285CrossRef
    37.Oncu NB, Balcioglu IA (2013) Antimicrobial contamination removal from environmentally relevant matrices: a literature review and a comparison of three processes for drinking water treatment. Ozone-Sci Eng 35:73–85CrossRef
    38.Kubacka A, Serrano C, Ferrer M et al (2007) High performance dual-action polymer–TiO2 nanocomposite films via melting processing. Nano Lett 7:2529–2534CrossRef
    39.Rincón A, Pulgarin C (2006) Comparative evaluation of Fe3+ and TiO2 photoassisted processes in solar photocatalytic disinfection of water. Appl Catal B Environ 63:222–231CrossRef
    40.Maness P, Smolinski S, Blake DM et al (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098
    41.Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photoc Photobio A 156(1–3):227–233CrossRef
    42.Herrera Melián JA, Rodríguez JM, Viera SA et al (2000) The photocatalytic disinfection of urban waste waters. Chemosphere 41(3):323–327CrossRef
    43.Perez-Estrada LA, Malato S, Gernjak W et al (2005) Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ Sci Technol 39(21):8300–8306CrossRef
    44.Sichel C, Fernández-Ibánez P, de Cara M, Tello J (2009) Lethal synergy of solar UV-radiation and H2O2 on wild Fusarium solani spores in distilled and natural well water. Water Res 43(7):1841–1850CrossRef
    45.Spuhler D, Rengifo-Herrera JA, Pulgarin C (2010) The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl Catal B Environ 96:126–141CrossRef
    46.Polo-López MI, García-Fernández I, Velegraki T et al (2012) Mild solar photo-Fenton: an effective tool for the removal of Fusarium from simulated municipal effluents. Appl Catal B Environ 111:54–554
    47.Ortega-Gómez E, Fernández-Ibáñez P, Ballasteros MM et al (2012) Water disinfection using photo-Fenton: effect of temperature on Enterococcus faecalis survival. Water Res 46:6154–6162CrossRef
    48.Michael I, Hapeshi E, Michael C et al (2012) Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: degradation kinetics, ecotoxicity and Phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res 46:5621–5634CrossRef
    49.Cengiz M, Uslu MO, Balcioglu I (2010) Treatment of E. coli HB101 and the tetM gene by Fenton’s reagent and ozone in cow manure. J Environ Manage 91:2590–2593CrossRef
    50.Diao HF, Li XY, Gu JD et al (2004) Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem 39:1421–1426CrossRef
    51.Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810CrossRef
    52.Rieder A, Schwartz T, Schön-Hölz K et al (2008) Molecular monitoring of inactivation efficiencies of bacteria during pulsed electric field (PEF) treatment of clinical wastewater. J Appl Microbiol 105(6):2035–2045CrossRef
  • 作者单位:Johannes Alexander (6)
    Popi Karaolia (7)
    Despo Fatta-Kassinos (7)
    Thomas Schwartz (6)

    6. Karlsruhe Institute of Technology (KIT)-Campus North, Institute of Functional Interfaces (IFG), 3640, 76021, Karlsruhe, Germany
    7. Nireas-International Water Research Centre, University of Cyprus, 20537, 1678, Nicosia, Cyprus
  • 丛书名:Advanced Treatment Technologies for Urban Wastewater Reuse
  • ISBN:978-3-319-23886-9
  • 刊物类别:Earth and Environmen
  • 刊物主题:Environment
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Geoecology and Natural Processes
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Environmental Management
  • 出版者:Springer Berlin / Heidelberg
文摘
The increase of antibiotic resistance in clinical settings but also in wastewater treatment plants is of increasing concern to human health. The goal of this chapter is to investigate the potential of different tertiary wastewater treatment technologies as to the reduction of the amount of antibiotic-resistant bacteria and genes in wastewater effluents. Molecular- and cultivation-based techniques are reported in the current scientific literature for the analysis of bacterial communities and especially opportunistic pathogenically bacteria in wastewater and after different levels of disinfection processes. Additionally, the presence of antibiotic resistance genes (vanA, mecA, ampC, ermB, blaVIM, tetM) and phenotypic resistance to ciprofloxacin, cefuroxime, trimethoprim, ofloxacin, and tetracycline were analyzed to characterize the impact of different wastewater treatments and advanced oxidation processes (AOPs) on the effluent antibiotic resistance patterns. The examination of the application of advanced oxidation and photo-driven technologies showed significant discrepancy among the removal of different bacterial families as well as bacterial species in wastewater.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700