Conversion of plant materials into hydroxymethylfurfural using ionic liquids
详细信息    查看全文
  • 作者:Young-Byung Yi ; Jin-Woo Lee ; Chung-Han Chung
  • 关键词:Raw plant feedstock ; Hydroxymethylfurfural ; Ionic liquid ; Biobased chemicals ; Bioenergy ; Plant bioengineering technology ; Biomass recalcitrance
  • 刊名:Environmental Chemistry Letters
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:13
  • 期:2
  • 页码:173-190
  • 全文大小:1,911 KB
  • 参考文献:Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128:552鈥?61. doi:10.鈥?111/鈥媕.鈥?365-2141.鈥?004.鈥?5332.鈥媥
    Adebayo GB, Ameen OM, Abass LT (2011) Physico-chemical properties of biodiesel produced from Jatropha curcas oil and fossil diesel. J Microbiol Biotechnol Res 1:12鈥?6
    Agarwal UP, Zhu JY, Ralph SA (2011) Enzymatic hydrolysis of biomass: effects of crystallinity, particle size, and lignin removal. In: Proceedings of the 16th ISWFPC, pp 910鈥?14
    Ahmed MM, Nasri SN, Hamza UD (2012) Biomass as a renewable source of chemicals for industrial applications. Int J Eng Sci Technol 4:721鈥?30
    Alam MI, De S, Dutta S, Saha B (2012) Solid-acid and ionic-liquid catalyzed one-pot transformation of biorenewable substrates into a platform chemical and a promising biofuel. RSC Adv 2:6890鈥?896. doi:10.鈥?039/鈥婥2RA20574B
    Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075鈥?098. doi:10.鈥?039/鈥婥2CS35188A
    Amiri H, Karimi K, Roodpeyma S (2010) Production of furans from rice straw by single-phase and biphasic systems. Carbohydr Res 345:2133鈥?138. doi:10.鈥?016/鈥媕.鈥媍arres.鈥?010.鈥?7.鈥?32
    Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1鈥?. doi:10.鈥?016/鈥媕.鈥媡ibtech.鈥?013.鈥?0.鈥?09
    Barri猫re Y, Riboulet C, M茅chin V, Maltese S, Pichon M, Cardinal A, Lapierre C, L眉bberstedt T, Martinant J-P (2007) Genetics and genomics of lignification in grass cell walls based on maize as model species. G3 Genes Genomes Genomics 1:133鈥?56
    Bauer-Marinovic M, Taugner F, Florian S, Glatt H (2012) Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2. Arch Toxicol 86:701鈥?11. doi:10.鈥?007/鈥媠00204-012-0807-5
    Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979鈥?985. doi:10.鈥?021/鈥媕a808537j
    Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 107:4516鈥?521. doi:10.鈥?073/鈥媝nas.鈥?912073107
    Binder JB, Cefali AV, Blank JJ, Raines RT (2010) Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural. Energy Environ Sci 3:765鈥?71. doi:10.鈥?039/鈥婤923961H
    Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet A-M, Joseleau J-P, Bolwell GP (2007) Modification of hemicellulose content by antisense downregulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68:2635鈥?648. doi:10.鈥?016/鈥媕.鈥媝hytochem.鈥?007.鈥?8.鈥?29
    Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337鈥?63. doi:10.鈥?146/鈥媋nnurev-genet-102209-163508
    Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24:336鈥?43. doi:10.鈥?016/鈥媕.鈥媍opbio.鈥?012.鈥?1.鈥?04
    Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J, Ralph J, Donohoe BS, Ladisch M, Chapple C (2014) Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509:376鈥?79. doi:10.鈥?038/鈥媙ature13084
    Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates鈥攖he US Department of Energy鈥檚 鈥淭op 10鈥?revisited. Green Chem 12:539鈥?54. doi:10.鈥?039/鈥婤922014C
    Burk MJ (2010) Sustainable production of industrial chemicals from sugar. Int Sugar J 112(1333):30鈥?5
    Canadell JG, Qu茅r茅 CL, Raupach MR (2007) Contributions to accelerating atmospheric CO2, growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci USA 104:18866鈥?8870. doi:10.鈥?073/鈥媝nas.鈥?702737104
    Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci Technol 44:793鈥?10. doi:10.鈥?016/鈥媕.鈥媗wt.鈥?010.鈥?1.鈥?02
    Chareonlimkun A, Champreda V, Shotipruk A, Laosiripojana N (2010) Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2鈥揨rO2 under hot compressed water (HCW) condition. Bioresour Technol 101:4179鈥?186. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?010.鈥?1.鈥?37
    Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164鈥?183. doi:10.鈥?002/鈥媋nie.鈥?00604274
    Christensen CH, Rass-Hansen J, Marsden CC, Taarning E, Egeblad K (2008) The renewable chemicals industry. ChemSusChem 1:283鈥?89. doi:10.鈥?002/鈥媍ssc.鈥?00700168
    Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010a) Direct conversion of starch to hydroxymethylfurfural in the presence of an ionic liquid with metal chloride. Starch St盲rke 62:326鈥?30. doi:10.鈥?002/鈥媠tar.鈥?01000012
    Chun J-A, Lee J-W, Yi Y-B, Hong S-S, Chung C-H (2010b) Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean J Chem Eng 27:930鈥?35. doi:10.鈥?007/鈥媠11814-010-0167-x
    Corma A, Ibora S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411鈥?502. doi:10.鈥?021/鈥媍r050989d
    Dashtban M, Gilbert A, Fatehi P (2014) Recent advancements in the production of hydroxymethylfurfural. RSC Adv 4:2037鈥?050. doi:10.鈥?039/鈥婥3RA45396K
    de Mar铆a PD (2008) 鈥淣onsolvent鈥?application of ionic liquids in biotransformation and organocatalysis. Angew Chem Int Ed 47:6960鈥?968. doi:10.鈥?002/鈥媋nie.鈥?00703305
    DeMartini JD, Pattathil S, Miller JS, Li H, Hahn MG, Wyman CE (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898鈥?09. doi:10.鈥?039/鈥婥3EE23801F
    Ding X, Wang M-Y, Yao Y-X, Li G-Y, Cai B-C (2010) Protective effect of 5-hydroxymethylfurfural derived from processed Fructus Corni on human hepatocyte LO2 injured by hydrogen peroxide and its mechanism. J Ethnopharmacol 128:373鈥?76. doi:10.鈥?016/鈥媕.鈥媕ep.鈥?010.鈥?1.鈥?43
    Dodds D, Gross R (2007) Chemicals from biomass. Science 318:1250鈥?251. doi:10.鈥?126/鈥媠cience.鈥?146356
    Dusselier M, Wouwe PV, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the economy: the role of chemocatalysis. Energ Environ Sci 6:1415鈥?442. doi:10.鈥?039/鈥婥3EE00069A
    Dutta S, De S, Saha B (2012) A brief summary of the synthesis of polyester building-block chemicals and biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259鈥?72. doi:10.鈥?002/鈥媍plu.鈥?01100035
    Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176鈥?85. doi:10.鈥?002/鈥媌iot.鈥?01100069
    Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, H枚gberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291鈥?96. doi:10.鈥?126/鈥媠cience.鈥?90.鈥?490.鈥?91
    Feng X, East AJ, Hammond W, Jaffe M (2010) Sugar-based chemicals for environmentally sustainable applications. In: ACS symposium series, vol 1061, Chapter 1. ACS Publications, Washington, DC, pp 3鈥?7
    Fesenko E, Edwards R (2014) Plant synthetic biology: a new platform for industrial biotechnology. J Exp Bot 65:1927鈥?937. doi:10.鈥?093/鈥媕xb/鈥媏ru070
    Ghandi K (2014) A review of ionic liquids, their limits and applications. Green Sustain Chem 4:44鈥?3. doi:10.鈥?236/鈥媑sc.鈥?014.鈥?1008
    Goujon T, Minic Z, Amrani AE, Lerouxel O, Aletti E, Lapierre C, Aletti E, Lapierre C, Joseleau J-P, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33:677鈥?90. doi:10.鈥?046/鈥媕.鈥?365-313X.鈥?003.鈥?1654.鈥媥
    Gowik U, Westhoff P (2011) The path from C3 to C4 photosynthesis. Plant Physiol 155:56鈥?3. doi:10.鈥?104/鈥媝p.鈥?10.鈥?65308
    Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804鈥?07. doi:10.鈥?126/鈥媠cience.鈥?137016
    Hisano H, Nandakumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Develop Biol Plant 45:306鈥?13. doi:10.鈥?007/鈥媠11627-009-9219-5
    Hoeven MV (2013) CO2 emissions from fuel combustion highlights. International Energy Agency (2013 Edition). www.鈥媔ea.鈥媜rg
    Holm MS, Saravanamurugan S, Taarning E (2010) Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328:602鈥?05. doi:10.鈥?126/鈥媠cience.鈥?183990
    Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453鈥?65. doi:10.鈥?111/鈥媕.鈥?467-7652.鈥?006.鈥?0195.鈥媥
    Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210鈥?18. doi:10.鈥?016/鈥媕.鈥媝bi.鈥?003.鈥?2.鈥?01
    Johnson JM-F, Coleman MD, Gesch R, Jaradat A, Mitchell R, Reicosky D, Wilhelm WW (2007) Biomass-bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1:1鈥?8
    Jong JD, Higson A, Walsh P, Wellisch M (2009) Bio-based chemicals; value-added products from biorefineries. IEA bioenergy鈥擳ask42 biorefinery. www.鈥媔ea-bioenergy.鈥媡ask42-biorefineries.鈥媍om
    Kawamoto H, Saito S, Hatanaka W, Saka S (2007) Catalytic pyrolysis of cellulose in sulfolane with some acidic catalysts. J Wood Sci 53:127鈥?33. doi:10.鈥?007/鈥媠10086-006-0835-y
    Kazi FK, Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex P (2011) Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem Eng J 169:329鈥?38. doi:10.鈥?016/鈥媕.鈥媍ej.鈥?011.鈥?3.鈥?18
    Lee JW (2013) Synthetic biology: a new opportunity in the field of plant biochemistry & physiology. J Plant Biochem Physiol 1:1鈥?. doi:10.鈥?172/鈥?329-9029.鈥?000e101
    Lee C, Teng Q, Huang W, Zhong R, Ye ZH (2009) Downregulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075鈥?089. doi:10.鈥?093/鈥媝cp/鈥媝cp060
    Lee JW, Shin JY, Chun YS, Jang HB, Song CE, Lee S-G (2010) Toward understanding the origin of positive effects of ionic liquids on catalysis: formation of more reactive catalysts and stabilization of reactive intermediates and transition states in ionic liquids. Acc Chem Res 43:985鈥?94. doi:10.鈥?021/鈥媋r9002202
    Lee J-W, Ha M-G, Yi Y-B, Chung C-H (2011) Chromium halides mediated production of hydroxymethylfurfural from starch-rich acorn biomass in an acidic ionic liquid. Carbohydr Res 346:177鈥?82. doi:10.鈥?016/鈥媕.鈥媍arres.鈥?010.鈥?1.鈥?09
    Lew CM, Rajabbeigi N, Tsapatsis M (2012) One-pot synthesis of 5-(ethoxymethyl)furfural from glucose using Sn-BEA and Amberlyst catalyst. Ind Eng Chem Res 51:5364鈥?366. doi:10.鈥?021/鈥媔e2025536
    Li Y-X, Li Y, Qian Z-J, Kim M-M, Kim S-K (2009) In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radical mediated oxidative systems. J Microbiol Biotechnol 19:1319鈥?327. doi:10.鈥?014/鈥媕mb.鈥?901.鈥?004
    Li C, Sun L, Simmons BA, Singh S (2013) Comparing the recalcitrance of eucalyptus, pine, and switchgrass using ionic liquid and dilute acid pretreatment. Bioenerg Res 6:14鈥?3. doi:10.鈥?007/鈥媠12155-012-9220-4
    Li H, Pattathil S, Foston MB, Ding S-Y, Kumar R, Gao X, Mittal A, Yarbrough JM, Himmel ME, Ragauskas AJ, Hahn MG (2014) Agave proves to be a low recalcitrant lignocellulosic feedstock for biofuels production on semi-arid lands. Biotechnol Biofuels 7:50. doi:10.鈥?186/鈥?754-6834-7-50
    Lichtenthaler FW (2012) Carbohydrates as organic raw materials. Ullmann鈥檚 encyclopedia of industrial chemistry, vol 6. Wiley, Weinheim, pp 583鈥?16
    Lichtenthaler FW, Peters S (2004) Carbohydrates as green materials for the chemical industry. C R Chim 7:65鈥?0. doi:10.鈥?016/鈥媕.鈥媍rci.鈥?004.鈥?2.鈥?02
    Liu B, Zhang Z, Huang K (2013) Cellulose sulfuric acid as bio-supported and recyclable solid acid catalyst for synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from fructose. Cellulose 20:2081鈥?089. doi:10.鈥?007/鈥媠10570-013-9944-0
    Liu A, Zhang Z, Fang Z, Liu B, Huang K (2014) Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid. J Ind Eng Chem 20:1977鈥?984. doi:10.鈥?016/鈥媕.鈥媕iec.鈥?013.鈥?9.鈥?20
    Lu S, Li L, Zhou G (2010) Genetic modification of wood quality for second-generation biofuel production. GM Crops 1:230鈥?36. doi:10.鈥?161/鈥媑mcr.鈥?.鈥?.鈥?3486
    Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem Int Ed 47:7924鈥?926. doi:10.鈥?002/鈥媋nie.鈥?00801594
    McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37鈥?6. doi:10.鈥?016/鈥婼0960-8524(01)00118-3
    Monien BH, Engst W, Barknowitz G, Seidel A, Glatt H (2012) Mutagenicity of 5- hydroxymethylfurfural in V79 cells expressing human SULT1A1: identification and mass spectrometric quantification of DNA adducts formed. Chem Res Toxicol 25:1484鈥?492. doi:10.鈥?021/鈥媡x300150n
    Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295鈥?14. doi:10.鈥?016/鈥媕.鈥媌ej.鈥?009.鈥?0.鈥?02
    Montross M, Crofcheck C (2010) Energy crops for the production of biofuels. In: Crocker M (ed) Thermochemical conversion of biomass to liquid fuels and chemicals. RSC Publishing, Cambridge, pp 26鈥?5
    Ochoa-Villarreal M, Aispuro-Hern谩ndez E, Vargas-Arispuro I, Mart铆nez-T茅llez M脕 (2012) Plant cell wall polymers: function, structure, and biological activity of their derivatives. doi:10.鈥?772/鈥?6094
    Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW (2013) Trends in global CO2 emissions: 2013 Report. PBL Netherlands Environmental Assessment Agency, PBL publication number: 1148. www.鈥媔ea.鈥媜rg , www.鈥媝bl.鈥媙l/鈥媏n
    Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373:1鈥?6. doi:10.鈥?016/鈥媕.鈥媋pcata.鈥?009.鈥?0.鈥?08
    Peplow M (2014) Cellulosic ethanol fights for life. Nature 507:152鈥?53
    Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383鈥?403. doi:10.鈥?039/鈥婥004968A
    Philp JC, Ritchie RJ, Allan JEM (2013) Biobased chemicals: the convergence of green chemistry with industrial biotechnology. Trends Biotechnol 31:219鈥?22. doi:10.鈥?016/鈥媕.鈥媡ibtech.鈥?012.鈥?2.鈥?07
    Putten R-J, Waal JC, Jong Ed, Rasrendra CB, Heeres HJ, Vries JGd (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499鈥?597. doi:10.鈥?021/鈥媍r300182k
    Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923鈥?930. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?010.鈥?6.鈥?61
    Qureshi ZS, Deshmukh KM, Bhanage BM (2014) Applications of ionic liquids in organic synthesis and catalysis. Clean Technol Environ Policy 16:1487鈥?513. doi:10.鈥?007/鈥媠10098-013-0660-0
    Ragauskas AJ, Beckham GI, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709 (12468431鈥?2468440). doi:10.鈥?126/鈥媠cience.鈥?246843
    Ralph J, Akiyama T, Coleman HD, Mansfield SD (2012) Effects of lignin structure of coumarate 3-hydroxylase downregulation in poplar. Bioenerg Res 5:1009鈥?019. doi:10.鈥?007/鈥媠12155-012-9218-y
    Rom谩n-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933鈥?937. doi:10.鈥?126/鈥媠cience.鈥?126337
    Rom谩n-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982鈥?86. doi:10.鈥?038/鈥媙ature05923
    Rosatella AA, Simeonov SP, Frade RFM, Afonso AM (2011) 5-hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754鈥?93. doi:10.鈥?039/鈥婥0GC00401D
    Sassi J-F, Tekely P, Chanzy H (2000) Relative susceptibility of the I伪 and I尾 phase of cellulose towards acetylation. Cellulose 7:119鈥?32. doi:10.鈥?023/鈥婣:鈥?009224008802
    Shen H, Poovaiah C, Ziebell A, Tschaplinski TJ, Pattathil S, Gjersing E, Engle NL, Katahira R, Pu Y, Sykes R, Chen F, Ragauskas AJ, Mielenz JR, Hahn MG, Davis M, Stewart CN Jr, Dixon RA (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6:71鈥?5. doi:10.鈥?186/鈥?754-6834-6-71
    Simmie JM, W眉rmel J (2013) Harmonizing production, properties and environmental consequences of liquid transport fuels from biomass鈥?,5-dimethylfuran as a case study. ChemSusChem 6:36鈥?1. doi:10.鈥?002/鈥媍ssc.鈥?01200738
    Simmons BA, Loqu茅 D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13:312鈥?19. doi:10.鈥?016/鈥媕.鈥媝bi.鈥?010.鈥?3.鈥?01
    Slattery CJ, Kavakli IH, Okita TW (2000) Engineering starch for increased quantity and quality. Trends Plant Sci 5:291鈥?98. doi:10.鈥?016/鈥婼1360-1385(00)01657-5
    Sommerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790鈥?92. doi:10.鈥?126/鈥媠cience.鈥?189268
    St氓hlberg T, Fu W, Woodley JM, Riisager A (2011) Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals. ChemSusChem 4:451鈥?58. doi:10.鈥?002/鈥媍ssc.鈥?01000374
    Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19鈥?2. doi:10.鈥?039/鈥婥0EE00246A
    Tadesse H, Luque R (2011) Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ Sci 4:3913鈥?929. doi:10.鈥?039/鈥婥0EE00667J
    Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE (2013) Biomass for thermochemical conversion targets and challenges. Frontiers Plant Sci 4(Article 218):1鈥?0. doi:10.鈥?389/鈥媐pls.鈥?013.鈥?0218
    Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem 16:2015鈥?026. doi:10.鈥?039/鈥婥3GC42018C
    Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as reagent. Angew Chem Int Ed 49:6616鈥?618. doi:10.鈥?002/鈥媋nie.鈥?01002267
    Tobimatsu Y, Chen F, Nakashima J, Escamilla-Trevino LL, Jackson L, Dixon RA, Ralph J (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell 25:2587鈥?600. doi:10.鈥?105/鈥媡pc.鈥?13.鈥?13142
    Vanholme R, Ralph J, Akiyama T, Lu F, Pazo JR, Kim H, Christensen JH, Reusel BV, Storme V, Rycke RD, Rohde A, Morreel K, Boerjan W (2010) Engineering traditional monolignols out of lignin by concomitant up-regulation of F5H1 and down-regulation of COMT in Arabidopsis. Plant J 64:885鈥?97. doi:10.鈥?111/鈥媕.鈥?365-313X.鈥?010.鈥?4353.鈥媥
    Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978鈥?000. doi:10.鈥?111/鈥媕.鈥?469-8137.鈥?012.鈥?4337.鈥媥
    Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuels 94:1鈥?3. doi:10.鈥?016/鈥媕.鈥媐uel.鈥?011.鈥?9.鈥?30
    Wagner A, Tobimatsu Y, Phillips L, Flint H, Torr K, Donaldson L, Paars L, Ralph J (2011) CCoAOMT suppression modifies lignin composition in Pinus radiate. Plant J 67:119鈥?29. doi:10.鈥?111/鈥媕.鈥?365-313X.鈥?011.鈥?4580.鈥媥
    Wang P, Yu H, Zhan S, Wang S (2011) Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresour Technol 102:4179鈥?183. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?010.鈥?2.鈥?73
    Wang C, Guo L, Li Y, Wang Z (2012) Systematic comparison of C3 and C4 plants based on metabolic network analysis. BMC Syst Biol 6(Suppl 2):S9(1鈥?4). doi:10.鈥?186/鈥?752-0509-6-S2-S9
    Wang H, Deng T, Wang Y, Cui X, Qi Y, Mu X, Hou X, Zhu Y (2013) Graphene oxide as a facile catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural. Green Chem 15:2379鈥?383. doi:10.鈥?039/鈥婥3GC41109E
    Wilkerson CG, Mansfield SD, Lu F, Withers S, Park JY, Karlen SD, Gonzales-Vigil E, Padmakshan D, Unda F, Rencoret J, Ralph J (2014) Monolignol ferulate transferase introduces chemically labile linkages into the lignin backbone. Science 344:90鈥?3. doi:10.鈥?126/鈥媠cience.鈥?250161
    Xu Y, Hanna MA, Isom L (2008) 鈥淕reen鈥?chemicals from renewable agricultural biomass鈥攁 mini review. Open Agric J 2:54鈥?1. doi:10.鈥?174/鈥?874331500802010鈥?54
    Yah L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492鈥?3504. doi:10.鈥?039/鈥婥4RA01631A
    Yang Y, Hu C-W, Abu-Omar MM (2012) Conversion of carbohydrates and lignocllulosic biomass into 5-hydroxymethylfurfural using AlCl3路6H2O catalyst in a biphasic solvent system. Green Chem 14:509鈥?13. doi:10.鈥?039/鈥婥1GC15972K
    Yang F, Mitra P, Zhang L, Prak L, Verhertbruggen Y, Kim J-S, Sun L, Zheng K, Tang K, Auer M, Scheller HV, Loqu茅 D (2013) Engineering secondary cell wall deposition in plants. Plant Biotechnol J 11:325鈥?35. doi:10.鈥?111/鈥媝bi.鈥?2016
    Yi Y-B, Lee J-W, Hong S-S, Choi Y-H, Chung C-H (2011) Acid-mediated production of hydroxymethylfurfural from raw plant biomass with high inulin in an ionic liquid. J Ind Eng Chem 17:6鈥?. doi:10.鈥?016/鈥媕.鈥媕iec.鈥?010.鈥?2.鈥?17
    Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2012a) New role of chromium fluoride: its catalytic action on the synthesis of hydroxymethylfurfural in ionic liquid using raw plant biomass and characterization of biomass hydrolysis. Chem Eng J 180:370鈥?75. doi:10.鈥?016/鈥媕.鈥媍ej.鈥?011.鈥?0.鈥?55
    Yi Y-B, Lee J-W, Choi Y-H, Park S-M, Chung C-H (2012b) Simple process for production of hydroxymethylfurfural from raw biomasses of girasol and potato tubers. Biomass Bioenerg 39:484鈥?88. doi:10.鈥?016/鈥媕.鈥媌iombioe.鈥?012.鈥?1.鈥?11
    Yi Y-B, Lee J-W, Choi Y-H, Park S-M, Chung C-H (2012c) Direct production of hydroxymethylfurfural from raw grape berry biomass using ionic liquids and metal chlorides. Environ Chem Lett 10:13鈥?9. doi:10.鈥?007/鈥媠10311-011-0322-6
    Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2013a) Effect of different halide types on HMF synthesis from kudzu extract in ionic liquid. J Clean Prod 41:244鈥?50. doi:10.鈥?016/鈥媕.鈥媕clepro.鈥?012.鈥?0.鈥?23
    Yi Y-B, Ha M-G, Lee J-W, Park S-M, Choi Y-H, Chung C-H (2013b) Direct conversion of citrus peel waste into hydroxymethylfurfural in ionic liquid by mediation of fluorinated metal catalysts. J Ind Eng Chem 19:523528. doi:10.鈥?016/鈥媕.鈥媕iec.鈥?012.鈥?9.鈥?04
    Yi Y-B, Ha M-G, Lee J-W, Chung C-H (2013c) Inulin conversion to hydroxymethylfurfural by Br酶nsted acid in ionic liquid and its physicochemical characterization. Korean J Chem Eng 30:1429鈥?435. doi:10.鈥?007/鈥媠11814-013-0078-8
    Yi Y-B, Lee J-W, Chung C-H (2014) Sustainable approach to catalytic conversion of starch-based biomaterials into hydroxymethylfurfural using ionic liquids. Curr Org Chem 18:1149鈥?158. doi:10.鈥?174/鈥?385272819999140鈥?26163023
    Yoshida M, Liu T, Uchida S, Kawarada K, Ukagami Y, Ichinise H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805鈥?10. doi:10.鈥?271/鈥媌bb.鈥?0689
    Youngs H, Sommerville C (2012) Development of feedstocks for cellulosic biofuels. F1000 Biol Rep 4:10. http://鈥媍reativecommons.鈥媜rg/鈥媗icenses/鈥媌y-nc/鈥?.鈥?/鈥媗egalcode
    Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209鈥?34. doi:10.鈥?146/鈥媋nnurev-arplant-042809-112301
    Zhang ZC (2013) Catalytic transformation of carbohydrates and lignin in ionic liquids. WIREs Energy Environ 2(6):655鈥?72
    Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111鈥?114. doi:10.鈥?016/鈥媕.鈥媌iortech.鈥?009.鈥?9.鈥?10
    Zhang K, Bhuiya M-W, Pazo JR, Miao Y, Kim H, Ralph J, Liu CJ (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell 24:3135鈥?152. doi:10.鈥?105/鈥媡pc.鈥?12.鈥?01287
    Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597鈥?600. doi:10.鈥?126/鈥媠cience.鈥?141199
    Zhong S, Daniel R, Xu H, Zhang J, Turner D, Wyszynski M, Richards P (2010) Combustion and emission of 2,5-dimethylfuran in a direct-injection spark-ignition engine. Energy Fuels 24:2891鈥?899. doi:10.鈥?021/鈥媏f901575a
  • 作者单位:Young-Byung Yi (1)
    Jin-Woo Lee (1)
    Chung-Han Chung (1) (2)

    1. Department of Biotechnology, Dong-A University, Busan, 604-714, South Korea
    2. ReSEAT Program, Korea Institute of Science and Technology Information, Seoul, 130-741, South Korea
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Analytical Chemistry
    Biochemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
    Soil Science and Conservation
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1610-3661
文摘
The use of fossil fuels now induces two major issues. First, fossil fuel burning is increasing atmospheric carbon dioxide (CO2) concentrations and, in turn, global warming. Second, fossil fuel resources are limited and will thus decrease in the long run. As a potential solution, there is a need for ecological manufacturing processes that convert raw plant materials into chemical products. For instance, raw plants can be directly converted into hydroxymethylfurfural, which is a versatile intermediate for the synthesis of valuable biofuels such as dimethylfuran and 5-ethoxymethyl-2-furfural. This technology has two benefits for chemical sustainability. First, the pretreatment step is eliminated, thus contributing to reduction of CO2 emissions. Second, plants are sustainable resources versus fossil fuels, which are limited. Here, we review current sustainable technologies for the production of biobased products and hydroxymethylfurfural from plants, using in particular ionic liquids. Plant sources include poplar, switchgrass, miscanthus, weed plants, and agave species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700