Laser acceleration in novel media
详细信息    查看全文
  • 作者:T. Tajima (1)
  • 刊名:The European Physical Journal - Special Topics
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:223
  • 期:6
  • 页码:1037-1044
  • 全文大小:
  • 参考文献:1. G. Mourou, S. Mirnov, E. Khazanov, A. Sergeev, Single Cycle Thin Film Compressor Opening the Door to Zeptosecond-Exawatt Physics, EPJ (submitted) (2014)
    2. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979) CrossRef
    3. M. Livingston, J. Blewett, / Particle Accelerators (McGraw-Hill, New York, 1962)
    4. A. Chao, M. Tigner, / Handbook of Accelerator Science and Technology (World Scientific, Singapore, 1999)
    5. D. Strickland, G. Mourou, Opt. Comm. 56, 219 (1985) CrossRef
    6. E. Esarey, et al., Rev. Mod. Phys. 81, 1229 (2009) CrossRef
    7. T. Tajima, Proc. Jpn. Acad. Ser. B 86, 147 (2010) CrossRef
    8. N. Naumova, et al., PRL 93, 195003 (2004) CrossRef
    9. K. Nakajima, et al., PR STAB 14, 091301 (2011)
    10. A. Deng, et al., PR STAB 15, 081303 (2012)
    11. B. Newberger, T. Tajima, F.R. Huson, W. Mackay, B.C. Covington, J.R. Payne, Z.G. Zou, N.K. Mahale, S. Ohnuma, / Application of Novel Material in Crystal Accelerator Concepts, Proc. IEEE Part. Acc. (IEEE, Chicago, 1989), p. 630
    12. G. Mourou, et al., Rev. Mod. Phys. 78, 309 (2006) CrossRef
    13. F.L. Zheng, H.Y. Wang, X.Q. Yan, J.E. Chen, Y.R. Lu, Z.Y. Guo, T. Tajima, X.T. He, Phys. Plasmas 19, 023111 (2012) CrossRef
    14. F.L. Zheng, et al., Phys. Plasmas 20, 013107 (2013) CrossRef
    15. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004) CrossRef
    16. F. Terranova, S. Bulanov, T. Esirkepov, P. Migliozzi, F. Pegoraro, T. Tajima, Nucl. Phys. B-Proc. Suppl. 143, 572 (2005) CrossRef
    17. “Nuclear Physics and Gamma-ray Sources for Nuclear Security and Nonproliferation-(Tokai, Japan, 2014) www.jaea.go.jp/english/npnsnp/NPNSNP%20Program
    18. A. Zhidkov, et al., Phys. Rev. Lett. 88, 185002 (2002) CrossRef
    19. J. Koga, S. Bulanov, T. Esirkepov, in / Ultrafast Optics V (2007)
    20. A. Di Piazza, C. Mueller, K. Hatsagortsyan, C. Keitel, Rev. Mod. Phys. 84, 1177 (2012) CrossRef
    21. S. Corde, et al., Rev. Mod. Phys. 85, 1 (2013) CrossRef
    22. Y. Ma, L.M. Chen, M. Chen, W.C. Yan, D.Z. Li, K. Huang, Z.M. Sheng, K. Nakajima, T. Tajima, J. Zhang, Nature Photon. (submitted) (2014)
    23. T. Tajima, K. Soyama, J. Koga, H. Takuma, J. Phys. Soc. Jpn. 69, 3840 (2000) CrossRef
    24. T. Tajima, Laser Part. Beams 3, 351 (1985) CrossRef
    25. T. Tajima, M. Cavenago, Phys. Rev. Lett. 59, 1440 (1987) CrossRef
  • 作者单位:T. Tajima (1)

    1. Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, 92697, USA
  • ISSN:1951-6401
文摘
With newly available compact laser technology [1] we are capable of producing 100?PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (?0?keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ?00?nm, the achievable energy is 1?PeV over 50?m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and defocusing for the X-ray pulse in vacuum forms a modulated fiber that guides the intense X-rays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700