Motion mode of the optimal damping particle in particle dampers
详细信息    查看全文
  • 作者:Kai Zhang ; Tianning Chen ; Xiaopeng Wang…
  • 关键词:Particle dampers ; Optimal damping ; Granular Leidenfrost effect ; Dissipation
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:30
  • 期:4
  • 页码:1527-1531
  • 全文大小:1,482 KB
  • 参考文献:[1]H. V. Panossian, Structural damping enhancement via nonobstructive particle damping technique, ASME, Transactions, J. of Vibration and Acoustics, 114 (1992) 101–105.CrossRef
    [2]M. Saeki, Analytical study of multi-particle damping, J. of Sound and Vibration, 281 3 (2005) 1133–1144.MathSciNet CrossRef
    [3]K. S. Marhadi and K. K. Vikram, Particle impact damping: effect of mass ratio, material, and shape, J. of Sound and Vibration, 283 1 (2005) 433–448.CrossRef
    [4]H. Abbas et al., Damping performance of metal swarfs in a horizontal hollow structure, JMST, 28 1 (2014) 9–13.
    [5]B. Darabi, Dissipation of vibration energy using viscoelastic granular materials, Diss. Un. Sheffield (2013).
    [6]C. Salueña, P. Thorsten and E. E. Sergei, Dissipative properties of vibrated granular materials, Physical Review E, 59 4 (1999) 4422.CrossRef
    [7]E. Clément, J. Duran and J. Rajchenbach, Experimental study of heaping in a two-dimensional ‘sand pile’, Physical Review Letters, 69 8 (1992) 1189.CrossRef
    [8]P. Evesque and J. Rajchenbach, Instability in a sand heap, Physical Review Letters, 62 (1) (1989) 44.CrossRef
    [9]K. M. Aoki and T. Akiyama, Spontaneous wave pattern formation in vibrated granular materials, Physical Review Letters, 77 20 (1996) 4166.CrossRef
    [10]S. Douady, S. Fauve and C. Laroche, Subharmonic instabilities and defects in a granular layer under vertical vibrations, EPL (Europhysics Letters), 8 (7) (1989) 621.CrossRef
    [11]O. Sano, Dilatancy, buckling, and undulations on a vertically vibrating granular layer, Physical Review E, 72 5 (2005) 051302.CrossRef
    [12]S. S. Hsiau, M. H. Wu and C. H. Chen, Arching phenomena in a vibrated granular bed, Powder Technology, 99 2 (1998) 185–193.CrossRef
    [13]Z.-H. Jiang, Y.-Y. Wang and W. Jing, Subharmonic motion of granular particles under vertical vibrations, EPL (Europhysics Letters), 74 (3) (2006) 417.CrossRef
    [14]E. E. Ehrichs et al., Granular convection observed by magnetic resonance imaging, Science, 267 5204 (1995) 1632–1634.CrossRef
    [15]D. Risso et al., Friction and convection in a vertically vibrated granular system, Physical Review E, 72 1 (2005) 011305.CrossRef
    [16]A. Kudrolli, M. Wolpert and P. G. Jerry, Cluster formation due to collisions in granular material, Physical Review Letters, 78 7 (1997) 1383.CrossRef
    [17]B. Meerson, T. Pöschel and Y. Bromberg, Close-packed floating clusters: granular hydrodynamics beyond the freezing point?, Physical Review Letters, 91 2 (2003) 024301.CrossRef
    [18]P. G. Eshuis, Leidenfrost effect and coarsening in a granular gas, Diss. Master Thesis, Un. Twente (2003).
    [19]P. Eshuis et al., Granular Leidenfrost effect: experiment and theory of floating particle clusters, Physical Review Letters, 95 25 (2005) 258001.CrossRef
    [20]E. W. C. Lim, Granular Leidenfrost effect in vibrated beds with bumpy surfaces, European Physical J. E, 32 4 (2010) 365–375.CrossRef
    [21]N. Rivas et al., From the granular Leidenfrost state to buoyancy-driven convection, Physical Review E, 91 4 (2015) 042202.CrossRef
    [22]J. Eggers, Sand as Maxwell’s demon, Physical Review Letters, 83 25 (1999) 5322.CrossRef
    [23]I. Goldhirsch, Rapid granular flows, Annual Review of Fluid Mechanics, 35 1 (2003) 267–293.MathSciNet CrossRef MATH
    [24]K. Zhang et al., Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper, Journal of Sound and Vibration, 364 (2016) 30–43.CrossRef
    [25]W. Liu, G. R. Tomlinson and J. A. Rongong, The dynamic characterisation of disk geometry particle dampers, J. of Sound and Vibration, 280 3 (2005) 849–861.CrossRef
    [26]Z. Lu, X. Lu and F. M. Sami, Studies of the performance of particle dampers under dynamic loads, J. of Sound and Vibration, 329 26 (2010) 5415–5433.CrossRef
    [27]Z. Lu, F. M. Sami and X. Lu, Parametric studies of the performance of particle dampers under harmonic excitation, Structural Control and Health Monitoring, 18 1 (2011) 79–98.
    [28]M. Sánchez and L. A. Pugnaloni, Effective mass overshoot in single degree of freedom mechanical systems with a particle damper, J. of Sound and Vibration, 330 24 (2011) 5812–5819.CrossRef
    [29]R. D. Friend and V. K. Kinra, Particle impact damping, J. of Sound and Vibration, 233 1 (2000) 93–118.CrossRef
    [30]M. Y. Yang, Development of master design curves for particle impact dampers, Diss. The Pennsylvania State University (2003).
    [31]J. G. Leidenfrost, De aquae communis nonnullis qualitatibus tractatus, Ovenius (1756).
    [32]P. Eshuis et al., Phase diagram of vertically shaken granular matter, Physics of Fluids, 19 12 (2007) 123301.CrossRef MATH
  • 作者单位:Kai Zhang (1)
    Tianning Chen (1)
    Xiaopeng Wang (1)
    Jianglong Fang (1)

    1. School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
To explore the optimal damping mechanism of Particle dampers (PDs), experimental studies on the relationship between the optimal damping performance of PDs and the motion mode of damping particles in PDs were conducted. First, the damping performance of PDs under a certain initial condition was investigated via cantilever system experiments. Then a simple evaluation of the effective mass and effective damping of PDs was performed by fitting the experimental data to an equivalent Single-degree-of-freedom (SDOF) system without damping particles. Finally, the motion mode of damping particles playing the optimal damping effect was determined by vibration table tests with the corresponding control parameters used in the cantilever system experiments. The study results indicate that when the optimal damping performance of PDs is obtained, the granular Leidenfrost effect, whereby the entire damping particle bed is levitated above the vibrating base by a layer of highly energetic particles, is observed in PDs. The optimal damping performance of PDs is mainly caused by the dissipative properties of damping particles in Leidenfrost state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700