Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach
详细信息    查看全文
  • 作者:Ying Li ; Wen-yu Zhao ; Xin Mu ; Xing Liu ; Dan-qi He…
  • 关键词:Tellurium nanowires ; self ; seed ; assisted growth ; optimization ; structural characterization
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:1661-1668
  • 全文大小:2,705 KB
  • 参考文献:1.L.E. Bell, Science 321, 1457 (2008).CrossRef
    2.T.C. Harman, P.J. Taylor, and M.P. Walsh, Science 297, 2229 (2002).CrossRef
    3.J. Holmes, K. Johnston, R. Doty, and B. Korgel, Science 287, 1471 (2000).CrossRef
    4.I. Bejenari and V. Kantser, Phys. Rev. B Condens. Matter Mater. Phys. 78, 115322 (2008).CrossRef
    5.L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRef
    6.M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, and T. Koga, Phys. Solid State 41, 679 (1999).CrossRef
    7.Y.M. Lin, X.Z. Sun, and M.S. Dresselhaus, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 4610 (2000).CrossRef
    8.M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRef
    9.Y.Q. Cao, T.J. Zhu, X.B. Zhao, X.B. Zhang, and J.P. Tu, Appl. Phys. A 92, 321 (2008).CrossRef
    10.Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).CrossRef
    11.M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).CrossRef
    12.R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRef
    13.P. Tangney and S. Fahy, Phys. Rev. B 65, 054302 (2002).CrossRef
    14.B. Abad, M. Rull-Bravo, S.L. Hodson, and X.F. Xu, Electrochim. Acta 169, 37 (2015).CrossRef
    15.Y. Deng, Z. Zhang, and Y. Wang, J. Solid State Chem. 183, 2631 (2010).CrossRef
    16.G.Q. Zhang, B. Kirk, and L.A. Jauregui, Nano Lett. 12, 56 (2012).CrossRef
    17.G.A. Tai, B. Zhou, and W.L. Guo, J. Phys. Chem. C 112, 11314 (2008).CrossRef
    18.R. Amatya and R.J. Ram, J. Electron. Mater. 41, 1011 (2012).CrossRef
    19.P. Mohanty, T. Kang, and B. Kim, J. Phys. Chem. B 110, 791 (2006).CrossRef
    20.B. Zhang, W. Zhou, and X. Ye, Adv. Funct. Mater. 17, 486 (2007).CrossRef
    21.Y. Zhu, W. Wang, and R. Qi, Angew. Chem. 116, 1434 (2004).CrossRef
    22.H.S. Qian, S.H. Yu, L.B. Luo, J.Y. Gong, and L.F. Fei, Langmuir 22, 3830 (2006).CrossRef
    23.Z. Wang, L. Wang, and J. Huang, J. Mater. Chem. 20, 2457 (2010).CrossRef
    24.J. Song, Y. Lin, and Y. Zhan, Cryst. Growth Des. 8, 1902 (2008).CrossRef
    25.H. Park, W. Son, S.H. Lee, S. Kim, and J.J. Lee, CrystEngComm 17, 1092 (2015).CrossRef
    26.Q.Y. Lu, F. Gao, and S. Komarneni, Langmuir 21, 6002 (2005).CrossRef
    27.X. Mu, W.Y. Zhao, D.Q. He, H.Y. Zhou, W.T. Zhu, and Q.J. Zhang, J. Electron. Mater. 44, 2048 (2015).CrossRef
    28.Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, and Y. Xia, Chem. Mater. 14, 4736 (2002).CrossRef
    29.Y.N. Wang, W.T. Wei, C.W. Yang, and M.H. Huang, Langmuir 29, 10491 (2013).CrossRef
    30.C. Preston, Y.L. Xu, X.G. Han, J.N. Munday, and L.B. Hu, Nano Res. 6, 461 (2013).CrossRef
    31.S.R. Ye, A.R. Rathmell, Y.C. Ha, A.R. Wilson, and B.J. Wiley, Small 10, 1771 (2014).CrossRef
    32.Y. Sun and Y. Xia, Adv. Mater. 14, 833 (2002).CrossRef
    33.H. Hofmeister, S.A. Nepijko, D.N. Ievlev, W. Schulze, and G. Ertl, J. Cryst. Growth 234, 773 (2002).CrossRef
    34.K. Wang, H.W. Liang, W.T. Yao, and S.H. Yu, J. Mater. Chem. 21, 15057 (2011).CrossRef
    35.A.A.A. Rahman, A.A. Umar, and M.H.U. Othman, Phys. E 66, 293 (2015).CrossRef
  • 作者单位:Ying Li (1)
    Wen-yu Zhao (1)
    Xin Mu (1)
    Xing Liu (1)
    Dan-qi He (1)
    Wan-ting Zhu (1)
    Qing-jie Zhang (1)

    1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Nanowires have attracted intense attention in recent years due to their novel physical properties. In this work, we prepare high-purity tellurium nanowires through the self-seed-assisted growth method previously developed by us. The tellurium seeds were firstly synthesized by reducing Na<sub>2sub>TeO<sub>3sub> in the ice water with NaBH<sub>4sub>. The high-purity tellurium nanowires with a diameter of 40–50 nm and a length of several tens of micrometers were then grown on tellurium seeds by reducing Na<sub>2sub>TeO<sub>3sub> with hydrazine hydrate. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of tellurium seeds and nanowires. The effects of temperature, time, surfactant and tellurium seeds on microstructures of tellurium nanowires has also been investigated. The synthesis conditions of tellurium seeds and nanowires was optimized. The selected area electron diffraction pattern confirms that the growth direction of tellurium nanowires is parallel to [0001] direction. It was discovered that high-purity tellurium nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the tellurium nuclei, selecting the appropriate surfactant to induce the coordination along the macromolecular chain, and using tellurium seeds as the templates of the epitaxial growth of tellurium nuclei.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700