Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia
详细信息    查看全文
  • 作者:Beth L. Roman ; David N. Finegold
  • 关键词:Hereditary hemorrhagic telangiectasia ; Arteriovenous malformation ; Activin receptor ; like kinase 1 ; Endoglin ; Bone morphogenetic protein ; Angiogenesis
  • 刊名:Current Genetic Medicine Reports
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:3
  • 期:1
  • 页码:35-47
  • 全文大小:466 KB
  • 参考文献:1. Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet: EJHG. 2009;17(7):860-1.
    2. Gallione CJ, Repetto GM, Legius E, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852-.
    3. Johnson DW, Berg JN, Baldwin MA, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189-5.
    4. McAllister KA, Grogg KM, Johnson DW, et al. Endoglin, a TGF-b binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345-1.
    5. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;3(10):616-0.
    6. Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-b superfamily. J Biol Chem. 1999;274(2):584-4.
    7. Cheifetz S, Bellon T, Cales C, et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem. 1992;267(27):19027-0.
    8. Bayrak-Toydemir P, McDonald J, Markewitz B, et al. Genotype-phenotype correlation in hereditary hemorrhagic telangiectasia: mutations and manifestations. Am J Med Genet Part A. 2006;140(5):463-0.
    9. Sabba C, Pasculli G, Lenato GM, et al. Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers. J Thromb haemost JTH. 2007;5(6):1149-7.
    10. Letteboer TG, Mager JJ, Snijder RJ, et al. Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006;43(4):371-.
    11. Letteboer TG, Mager HJ, Snijder RJ, et al. Genotype-phenotype relationship for localization and age distribution of telangiectases in hereditary hemorrhagic telangiectasia. Am J Med Genet Part A. 2008;146A(21):2733-.
    12. Faughnan ME, Granton JT, Young LH. The pulmonary vascular complications of hereditary haemorrhagic telangiectasia. Eur Respir J. 2009;33(5):1186-4.
    13. Gallione CJ, Richards JA, Letteboer TG, et al. SMAD4 mutations found in unselected HHT patients. J Med Genet. 2006;43(10):793-.
    14. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280(5366):1086-.
    15. Gallione C, Aylsworth AS, Beis J, et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome. Am J Med Genet Part A. 2010;152A(2):333-.
    16. Cole SG, Begbie ME, Wallace GM, Shovlin CL. A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5. J Med Genet. 2005;42(7):577-2.
    17. Bayrak-Toydemir P, McDonald J, Akarsu N, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet Part A. 2006;140(20):2155-2.
    18. ?-Benzinou M, Clermont FF, Letteboer TG, et al. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. / Nat Commun. 2012;3:616. / This paper used the power of mouse genetics to identify the first HHT genetic modifier, PTPN14. Two polymorphisms in this gene were associated with high risk for PAVMs in HHT1 and HHT2 patients.
    19. Kawasaki K, Freimuth J, Meyer DS, et al. Genetic variants of Adam17 differentially regulate TGFbeta signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci USA. 2014;111(21):7723-.
    20. Mallet C, Lamribet K, Giraud S, et al. Functional analysis of endoglin mutations from hereditary hemorrhagic telangiectasia type 1 patients reveals different mechanisms for endoglin loss of function. Hum Mol Genet. 2014. doi:10.1093/hmg/ddu531 .
    21. Pece N, Vera S, Cymerman U, White RI Jr, Wrana JL, Letarte M. Mutant endoglin in hereditary hemorrhagic telangiectasia type 1 is transiently expressed intracellularly and is not a dominant negative. J Clin Invest. 1997;100(10):2568-9.
    22. Bourdeau A, Cymerman U, Paquet ME, et al. Endoglin expression is reduced in normal vessels but still detectable in arteriovenous malformations of patients with hereditary hemorrhagic telangiectasia type 1. Am J Pathol. 2000;156(3):911-3.
    23. Paquet ME, Pece-Barbara N, Vera S, et al. Analysis of several endoglin mutants reveals no endogenous mature or secreted protein capable of interfering with normal endoglin function. Hum Mol Genet. 2001;10(13):1347-7.
    24. Ali BR, Ben-Rebeh I, John A, et al. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia. PLoS One. 2011;6(10):e26206.
    25. Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet. 1997;61(1):68
  • 作者单位:Beth L. Roman (1)
    David N. Finegold (1)

    1. University of Pittsburgh Graduate School of Public Health, 130 DeSoto St., Pittsburgh, PA, 15261, USA
  • 刊物主题:Internal Medicine;
  • 出版者:Springer US
  • ISSN:2167-4876
文摘
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that predisposes patients to develop direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although the genes responsible for the majority of HHT cases have been known for nearly 20?years, molecular and cellular mechanisms underlying pathogenesis are poorly understood, and the genetic and/or environmental factors that confer variability to age of onset and expressivity of HHT remain unknown. Herein, we review the genetics and genotype/phenotype correlations associated with HHT and summarize data from animal and cell culture models that lend insight into disease mechanism. At present, therapies available to HHT patients for treatment of visceral AVMs are primarily surgical, although antiangiogenic agents show some efficacy in treatment of telangiectasias, epistaxis, and liver AVMs. In light of new mechanistic data on disease pathogenesis, we consider possible approaches for development of more targeted therapeutics for HHT patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700