Ionic Liquids: Physics Bridging Two Fields
详细信息    查看全文
  • 刊名:Topics in Applied Physics
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:132
  • 期:1
  • 页码:311-354
  • 全文大小:2,101 KB
  • 参考文献:1.K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, J. Phys. Chem. B 109, 17356 (2005)CrossRef
    2.K.L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, C.M. Roland, in Adv. Chem. Phys. Part B, Fractals, Diffusion and Relaxation in Disordered Complex Systems, vol. 133, ed. by Y.P. Kalmykov, W.T. Coffey, S.A. Rice (Wiley, New York, 2006), pp. 497–585. Chapter 10
    3.G.N. Lewis, M. Randall, Thermodynamics, 2nd edn. (McGraw-Hill, New York, 1961)
    4.M. Mierzwa, S. Pawlus, M. Paluch, E. Kaminska, K.L. Ngai, J. Chem. Phys. 128, 044512 (2008)CrossRef
    5.K. Kessairi, S. Capaccioli, D. Prevosto, M. Lucchesi, S. Sharifi, P.A. Rolla, J. Phys. Chem. B 112, 4470 (2008)CrossRef
    6.M.S. Thayyil, K.L. Ngai, D. Prevosto, S. Capaccioli, J. Non-Cryst. Solids 407, 98 (2015)CrossRef
    7.K.L. Ngai, J. Chem. Phys. 109, 6982 (1998)CrossRef
    8.K.L. Ngai, M. Paluch, J. Chem. Phys. 120, 857 (2004)CrossRef
    9.K.L. Ngai, J. Phys. Condens. Matter 15, S1107 (2003)CrossRef
    10.K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)CrossRef
    11.Z. Wojnarowska, K.L. Ngai, M. Paluch, Phys. Rev. E 90, 062315 (2014)CrossRef
    12.F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)CrossRef
    13.A. Pimenov, P. Lunkenheimer, H. Rall, R. Kohlhaas, A. Loidl, R. Böhmer, Phys. Rev. E 54, 676 (1996)CrossRef
    14.W.C. Hasz, C.T. Moynihan, J. Non-Cryst. Solids 172–174, 1363 (1994)CrossRef
    15.N. Ito, R. Richert, J. Phys. Chem. B 111, 5016–5022 (2007)CrossRef
    16.A. Rivera, E. Rössler, Phys. Rev. B 73, 212201 (2006)CrossRef
    17.K.L. Ngai, J. Phys. Chem. B 110, 26211–26214 (2006)CrossRef
    18.K.L. Ngai, Solid State Ionics 5, 27–34 (1981)CrossRef
    19.K.L. Ngai, J.N. Mundy, in Physics of Non-Crystalline Solids, ed. by L.D. Pye, W.C. LaCourse, H.J. Stevens (Taylor and Francis, Washington, 1992), p. 342
    20.L.P. Boesch, C.T. Moynihan, J. Non-Cryst. Solids 17, 44 (1975)CrossRef
    21.C.T. Moynihan, J. Non-Cryst. Solids 235–237, 781–788 (1998)CrossRef
    22.K.L. Ngai, J. Habasaki, C. León, A. Rivera, Z. Phys Chem. 219, 47 (2005)CrossRef
    23.C. León, J. Habasaki, K.L. Ngai, Z. Phys Chem. 223, 999 (2009)CrossRef
    24.K.L. Ngai, R.W. Rendell, in Relaxation Complex Systems and Related Topics, ed. by I.A. Campbell, C. Giovannella (Plenum Press, New York, 1990), pp. 309–316CrossRef
    25.K.L. Ngai, J. Phys. Chem. B 103, 10684 (1999)CrossRef
    26.M.T. Cicerone, P.A. Wagner, M.D. Ediger, J. Phys. Chem. B 101, 8727 (1997)CrossRef
    27.M.K. Mapes, S.F. Swallen, M.D. Ediger, J. Phys. Chem. B 110, 507 (2006)CrossRef
    28.K.L. Ngai, J.H. Magill, D.J. Plazek, J. Chem. Phys. 112, 1887 (2000)CrossRef
    29.D. Chakrabarti, B. Bagchi, Phys. Rev. Lett. 96, 187801 (2006)CrossRef
    30.J.R. Rajian, W. Huang, R. Richert, E.L. Quitevis, J. Chem. Phys. 124, 014510 (2006)CrossRef
    31.K.L. Ngai, S. Capaccioli, J. Phys. Condens. Matter 20, 244101 (2008)CrossRef
    32.K.L. Ngai, Philos. Mag. 87, 357 (2007)CrossRef
    33.M.D. Ediger, P. Harrowell, J. Chem. Phys. 137, 080901 (2012)CrossRef
    34.K.L. Ngai, S. Mashimo, G. Fytas, Macromolecules 21, 3030 (1988)CrossRef
    35.M. Tatsumisago, C.A. Angell, S.W. Martin, J. Chem. Phys. 97, 6968 (1992)CrossRef
    36.S. Estalji, O. Kanert, J. Steinert, H. Jain, K. Ngai, Phys. Rev. B 43, 7481 (1991)CrossRef
    37.C. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992)CrossRef
    38.K. Kim, D. Torgeson, F. Borsa, J. Cho, S. Martin, I. Svare, Solid State Ionics 91, 7 (1996)CrossRef
    39.M. Trunnell, D.R. Torgeson, S.W. Martin, F. Borsa, J. Non-Cryst. Solids 139, 257 (1992)CrossRef
    40.F. Borsa, D.R. Torgeson, S.W. Martin, H.K. Patel, Phys. Rev. B 46, 795 (1992)CrossRef
    41.M. Meyer, P. Maass, A. Bunde, Phys. Rev. Lett. 71, 573 (1993)CrossRef
    42.K.L. Ngai, Phys. Rev. B 48, 13481 (1993)CrossRef
    43.K.L. Ngai, J.N. Mundy, H. Jain, O. Kanert, G. Balzer-Jollenbeck, Phys. Rev. B 39, 6169 (1989)CrossRef
    44.K.L. Ngai, Solid State Ionics 61, 345 (1993)CrossRef
    45.K.L. Ngai, J. Chem. Phys. 98, 6424 (1993)CrossRef
    46.A. Rivera-Calzada, K. Kaminski, C. Léon, M. Paluch, J. Phys. Chem. B 112, 3110 (2008)CrossRef
    47.A. Rivera, A. Brodin, A. Pugachev, E.A. Rössler, J. Chem. Phys. 126, 114503 (2007)CrossRef
    48.K.L. Ngai, S. Capaccioli, Phys. Rev. E 69, 031501 (2004)CrossRef
    49.G. Jarosz, M. Mierzwa, J. Ziozo, M. Paluch, H. Shirota, K.L. Ngai, J. Phys. Chem. B 115, 12709 (2011)CrossRef
    50.K.L. Ngai, J. Habasaki, Y. Hiwatari, C. León, J. Phys. Condens. Matter 15, S1607 (2003)CrossRef
    51.S. Hensel-Bielowka et al., J. Phys. Chem. C 119, 20363 (2015)CrossRef
    52.Z. Wojnarowska, A. Swiety-Pospiech, K. Grzybowska, L. Hawelek, M. Paluch, K.L. Ngai, J. Chem. Phys. 136, 164507 (2012)CrossRef
    53.S. Hensel-Bielowka, K.L. Ngai, A. Swiety-Pospiech, L. Hawelek, J. Knapik, W. Sawicki, M. Paluch, J. Non-Cryst. Solids 407, 81 (2015)CrossRef
    54.W.G. Hoover, M. Ross, Contemp. Phys. 12, 339 (1971)CrossRef
    55.W.G. Hoover, M. Ross, K.W. Johnson, D. Henderson, J.A. Barker, B.C. Brown, J. Chem. Phys. 52, 4931 (1970)
    56.Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, A. Ueda, Prog. Theor. Phys. 52, 1105 (1974)CrossRef
    57.A. Tölle, H. Schober, J. Wuttke, O.G. Randl, F. Fujara, Phys. Rev. Lett. 80, 2374 (1998)CrossRef
    58.C. Dreyfus, A. Aouadi, J. Gapinski, M. Matos-Lopes, W. Steffen, A. Patkowski, R.M. Pick, Phys. Rev. E 68, 011204 (2003)CrossRef
    59.C. Alba-Simionesco, D. Kivelson, G. Tarjus, J. Chem. Phys. 116, 5033 (2002)CrossRef
    60.G. Tarjus, D. Kivelson, S. Mossa, C. Alba-Simionesco, J. Chem. Phys. 120, 6135 (2004)CrossRef
    61.K.L. Ngai, J. Habasaki, D. Prevosto, S. Capaccioli, M. Paluch, J. Chem. Phys. 137, 034511 (2012)CrossRef
    62.R. Casalini, C.M. Roland, Phys. Rev. E 69, 062501 (2004)CrossRef
    63.C.M. Roland, R. Casalini, J. Chem. Phys. 121, 11503 (2004)CrossRef
    64.R. Casalini, S. Capaccioli, C.M. Roland, J. Phys. Chem. B 110, 11491 (2006)CrossRef
    65.R. Casalini, C.M. Roland, Colloid Polym. Sci. 283, 107 (2004)CrossRef
    66.C. Alba-Simionesco, A. Cailliaux, A. Alegria, G. Tarjus, Europhys. Lett. 68, 58 (2004)CrossRef
    67.C.M. Roland, S. Hensel-Bielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68, 1405 (2005)CrossRef
    68.K. Kaminski, S. Maslanka, J. Ziolo, M. Paluch, K.J. McGrath, C.M. Roland, Phys. Rev. E 75, 011903 (2007)CrossRef
    69.S. Capaccioli, D. Prevosto, K. Kessairi, M. Lucchesi, P.A. Roland, Philos. Mag. 87, 681 (2007)CrossRef
    70.C.M. Roland, R. Casalini, R. Bergman, J. Mattsson, Phys. Rev. B 77, 012201 (2008)CrossRef
    71.S. Capaccioli, R. Casalini, D. Prevosto, P.A. Rolla, unpublished
    72.M. Paluch, S. Pawlus, S. Hensel-Bielowka, S. Kaminska, D. Prevosto, S. Capaccioli, P.A. Rolla, K.L. Ngai, J. Chem. Phys. 122, 234506 (2005)CrossRef
    73.R. Casalini, C.M. Roland, J. Chem. Phys. 144, 024502 (2016)CrossRef
    74.R. Richert, K. Duvvuri, L.-T. Duong, J. Chem. Phys. 118, 1828 (2003)CrossRef
    75.C.M. Roland, S. Bair, R. Casalini, J. Chem. Phys. 125, 124508 (2006)CrossRef
    76.J. Bartoš, O. Šauša, G.A. Schwartz, A. Alegría, J.M. Alberdi, A. Arbe, J. Krištiak, J. Colmenero, J. Chem. Phys. 134, 164507 (2011)CrossRef
    77.J. Bartoš, P. Bandzuch, O. Šauša, K. Kristiakova, J. Kristiak, T. Kanaya, W. Jenninger, Macromolecules 30, 6906 (1997)CrossRef
    78.H.A. Hristov, B. Bolan, A.F. Yee, L. Xie, D.W. Gidley, Macromolecules 29, 8507 (1996)CrossRef
    79.C.L. Wang, T. Hirade, F.H.J. Maurer, M. Eldrup, N.J. Pedersen, J. Chem. Phys. 108, 4654 (1998)CrossRef
    80.N. Qi, Z.Q. Chen, A. Uedono, Radiat. Phys. Chem. 108, 81 (2015)CrossRef
    81.H. Fujimori, M. Oguni, J. Chem. Thermodyn. 26, 367 (1994)CrossRef
    82.S. Vyazovkin, I. Dranca, Pharm. Res. 23, 422 (2006)CrossRef
    83.V.A. Bershtein, V.M. Egorov, Differential Scanning Calorimetry of Polymers (Ellis Horwood, New York, 1994)
    84.D.P.B. Aji, G.P. Johari, J. Chem. Phys. 142, 214501 (2015)CrossRef
    85.S. Capaccioli, K.L. Ngai, M. Shahin Thayyil, D. Prevosto, J. Phys. Chem. B 119, 8800 (2015)CrossRef
    86.K.L. Ngai, S. Capaccioli, D. Prevosto, L.M. Wang, J. Phys. Chem. B 119, 12502 (2015)CrossRef
    87.K.L. Ngai, S. Capaccioli, D. Prevosto, L.M. Wang, J. Phys. Chem. B 119, 12519 (2015)CrossRef
    88.M. Paluch, Z. Wojnarowska, P. Goodrich, J. Jacquemin, J. Pionteck, S. Hensel-Bielowka, Soft Matter 11, 6520 (2015)CrossRef
    89.F. Stickel, E.W. Fischer, R. Richert, J. Chem. Phys. 102, 6251 (1995)CrossRef
    90.F. Stickel, Untersuchung der Dynamik in niedermolekularen Flüssigkeiten mit Dielektrischer Spektroskopie (Shaker, Aachen, 1995)
    91.K.L. Ngai, C.M. Roland, Polymer 43, 567 (2002)CrossRef
    92.K.L. Ngai, L.-R. Bao, A.F. Yee, C.L. Soles, Phys. Rev. Lett. 87, 215901 (2001)CrossRef
    93.R. Casalini, K.L. Ngai, C.M. Roland, Phys. Rev. B 68, 014201 (2003)CrossRef
    94.R. Casalini, M. Paluch, C.M. Roland, J. Chem. Phys. 118, 5701 (2003)CrossRef
    95.Z. Wojnarowska, G. Jarosz, A. Grzybowski, J. Pionteck, J. Jacquemin, M. Paluch, Phys. Chem. Chem. Phys. 16, 20444 (2014)CrossRef
    96.E.R. López, A.S. Pensado, J. Fernández, K.R. Harris, J. Chem. Phys. 136, 214502 (2012)CrossRef
    97.M. Paluch, S. Haracz, A. Grzybowski, M. Mierzwa, J. Pionteck, A. Rivera-Calzada, C. Leon, J. Phys. Chem. Lett. 1, 987 (2010)CrossRef
    98.A.S. Pensado, A.A.H. Padua, M.J.P. Comunas, J. Fernandez, J. Phys. Chem. B 112, 5563 (2008)CrossRef
    99.Z. Wojnarowska, M. Paluch, A. Grzybowski, K. Adrjanowicz, K. Grzybowska, K. Kaminski, P. Wlodarczyk, J. Pionteck, J. Chem. Phys. 131, 104505 (2009)CrossRef
    100.A. Swiety-Pospiech, Z. Wojnarowska, S. Hensel-Bielowka, J. Pionteck, M. Paluch, J. Chem. Phys. 138, 204502 (2013)CrossRef
    101.J. Habasaki, R. Casalini, K.L. Ngai, J. Phys. Chem. B 114, 3902 (2010)CrossRef
    102.J.G. Kirkwood, J. Chem. Phys. 3, 300 (1935)CrossRef
    103.M.C.C. Ribeiro, T. Scopigno, G. Ruocco, J. Chem. Phys. 135, 164510 (2011)CrossRef
    104.K.L. Ngai, R. Casalini, C.M. Roland, Macromolecules 38, 4363 (2005)CrossRef
    105.D. Coslovich, C.M. Roland, J. Chem. Phys. 131, 151103 (2009)CrossRef
    106.G.F. Signorini, J.-L. Barrat, M.L. Klein, J. Chem. Phys. 92, 1294 (1990)CrossRef
    107.J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, London, 1986)
    108.J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)CrossRef
    109.D. Chandler, J.D. Weeks, H.C. Andersen, Science 220, 787 (1983)CrossRef
    110.D. Coslovich, C.M. Roland, J. Phys. Chem. B 112, 1329 (2008)CrossRef
  • 作者单位:Junko Habasaki (7)
    Carlos León (8)
    K. L. Ngai (9)

    7. Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
    8. Facultad de Fisica, Universidad Complutense Madrid, Madrid, Spain
    9. IPCF, CNR, Pisa, Italy
  • 丛书名:Dynamics of Glassy, Crystalline and Liquid Ionic Conductors
  • ISBN:978-3-319-42391-3
  • 刊物类别:Physics and Astronom
  • 刊物主题:Physics
    Magnetism and Magnetic Materials
    Optical and Electronic Materials
    Laser Technology and Physics and Photonics
    Quantum Computing, Information and Physics
    Applied Optics, Optoelectronics and Optical Devices
    Solid State Physics and Spectroscopy
    Condensed Matter
  • 出版者:Springer Berlin / Heidelberg
  • 卷排序:132
文摘
When considering the ionic liquids (ILs) in general, and especially the room temperature ionic liquids (RTIL), the interest is naturally focused on the ionic conductivity and ion dynamics. Nonetheless, many ionic liquids are glass-formers, and undergo glass transition at T g on cooling at ambient pressure or at P g on elevating the applied pressure P at constant temperature. In the supercooled liquid state, both the structural relaxation and the ionic conductivity relaxation are present and observable. Thus glass-forming ILs confer the bonus of studying ionic conductivity relaxation and structural relaxation in the same material. If the two processes are decoupled, the relation between the structural relaxation and the conductivity relaxation, and possible effect of the former on the latter is of interest in basic research as well as in applications. Some general and interesting properties of the two relaxation processes are brought out in this chapter. The challenge to theory is the explanation of not only the properties of the conductivity relaxation but also the structural relaxation, and their relations. As it turns out, the properties of the two relaxation processes are similar, indicating that they stem from some common physics that bridge the two fields. Proposed specifically for ionic conductivity relaxation and diffusion, some theory or model may run into difficulty in adapting it to explain the similar property of structural relaxation and viscosity of glass-formers. This problem casts doubt on the physics of the theory because it is common to the two fields, and a viable theory proposed in one field should be easy in adapting to the other field. Therefore it is beneficial for those engaged in research of ionic conductivity relaxation and particularly in ionic liquids to be aware of the wealth of properties of glass-forming systems and the explanations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700