Mixed-phase clouds cause climate model biases in Arctic wintertime temperature inversions
详细信息    查看全文
  • 作者:Felix Pithan (1) (2)
    Brian Medeiros (3)
    Thorsten Mauritsen (1)
  • 关键词:Arctic ; Boundary layer ; Turbulence ; Temperature inversion
  • 刊名:Climate Dynamics
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:43
  • 期:1-2
  • 页码:289-303
  • 全文大小:1,974 KB
  • 参考文献:1. Abbot DS, Tziperman E (2008) A high-latitude convective cloud feedback and equable climates. Q J Roy Met Soc 134(630):165鈥?85. doi:10.1002/qj.211 CrossRef
    2. ACIA (2004) Impacts of a warming Arctic鈥揂rctic climate impact assessment. Cambridge University Press, Cambridge
    3. Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near ice saturation. J Geophys Res Oceans 107(C10):SHE 8鈥?鈥揝HE 8鈥?5. doi:10.1029/2000JC000411 CrossRef
    4. Barrett A (2012) Why can鈥檛 models simulate mixed-phase clouds correctly? PhD thesis, University of Reading
    5. Bergeron T (1935) On the physics of clouds and precipitation. In: Proceedings of 5th Assembly, UGGI, Lisbon, pp 156鈥?78
    6. Bintanja R, Graversen R, Hazeleger W (2011) Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat Geosci 4:758鈥?61 CrossRef
    7. Cesana G, Kay J, Chepfer H, English J, de Boer G (2012) Ubiquitous low-level liquid-containing Arctic clouds: new observations and climate model constraints from CALIPSO-GOCCP. Geophys Res Lett 39(20):L20,804
    8. Curry J (1983) On the formation of continental polar air. J Atmos Sci 40:2278鈥?292 CrossRef
    9. Curry J (1986) Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J Atmos Sci 43(1):90鈥?06 CrossRef
    10. Cuxart J, Holtslag A, Beare R, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R et聽al (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-layer Met 118(2):273鈥?03 CrossRef
    11. Devasthale A, Sedlar J, Tjernstr枚m M (2011) Characteristics of water-vapour inversions observed over the arctic by atmospheric infrared sounder (airs) and radiosondes. Atmos Chem Phys 11:9813鈥?823 CrossRef
    12. Donner L, Wyman B, Hemler R, Horowitz L, Ming Y, Zhao M, Golaz J, Ginoux P, Lin S, Schwarzkopf M et聽al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484鈥?519 CrossRef
    13. Findeisen W (1938) Die kolloidmeteorologischen Vorg盲nge bei der Niederschlagsbildung. Meteor Z 55:121鈥?33
    14. Francis JA, Vavrus SJ (2012) Evidence linking arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06801. doi:10.1029/2012GL051000 CrossRef
    15. Fridlind AM, Van Diedenhoven B, Ackerman AS, Avramov A, Mrowiec A, Morrison H, Zuidema P, Shupe MD (2012) A fire-ace/sheba case study of mixed-phase arctic boundary layer clouds: entrainment rate limitations on rapid primary ice nucleation processes. J Atmos Sci 69(1):365鈥?89 CrossRef
    16. Gent P, Danabasoglu G, Donner L, Holland M, Hunke E, Jayne S, Lawrence D, Neale R, Rasch P, Vertenstein M et聽al (2011) The community climate system model version 4. J Clim 24(19):4973鈥?991 CrossRef
    17. Gettelman A, Walden V, Miloshevich L, Roth W, Halter B (2006) Relative humidity over Antarctica from radiosondes, satellites, and a general circulation model. J Geophys Res 111(D9):D09S13
    18. Held I (1978) The tropospheric lapse rate and climatic sensitivity: experiments with a two-level atmospheric model. J Atmos Sci 35:2083鈥?098 CrossRef
    19. Honda M, Inoue J, Yamane S (2009) Influence of low arctic sea-ice minima on anomalously cold eurasian winters. Geophys Res Lett 36(8):L08,707. doi:10.1029/2008GL037079 CrossRef
    20. Hourdin F, Grandpeix J, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I et聽al (2012) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. doi:10.1007/s00382-012-1343-y
    21. Jones P, New M, Parker D, Martin S, Rigor I (1999) Surface air temperature and its changes over the past 150聽years. Rev Geophys 37(2):173鈥?99 CrossRef
    22. Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013鈥?031 CrossRef
    23. Klein SA, McCoy RB, Morrison H, Ackerman AS, Avramov A, de~Boer G, Chen M, Cole JN, Del Genio AD, Falk M et聽al (2009) Intercomparison of model simulations of mixed-phase clouds observed during the arm mixed-phase arctic cloud experiment. i: Single-layer cloud. Quart J R Meteorol Soc 135(641):979鈥?002 CrossRef
    24. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Clim Dyn 12(8):557鈥?72 CrossRef
    25. Manabe S, Wetherald R (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3鈥?5 CrossRef
    26. Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, Haak H, Jungclaus J, Klocke D, Matei D et聽al (2012) Tuning the climate of a global model. J Adv Model Earth Sys 4:M00A01. doi:10.1029/2012MS000154
    27. Medeiros B, Deser C, Tomas R, Kay J (2011) Arctic inversion strength in climate models. J Clim 24:4733鈥?740 CrossRef
    28. M茅t茅o France (2009) ARPEGE-Climat V5.1 algorithmic documentation. Tech. Rep., M茅t茅o France/CNRM
    29. Morrison H, de Boer G, Feingold G, Harrington J, Shupe M, Sulia K (2012) Resilience of persistent Arctic mixed-phase clouds. Nat Geosci 4:11鈥?7. doi:10.1038/ngeo1332
    30. Overland J, Guest P (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96(C3):4651鈥?662 CrossRef
    31. Pavelsky T, Bo茅 J, Hall A, Fetzer E (2011) Atmospheric inversion strength over polar oceans in winter regulated by sea ice. Clim Dyn 36(5):945鈥?55 CrossRef
    32. Persson P, Uttal T, Intrieri J, Fairall C, Andreas E, Guest P (1999) Observations of large thermal transitions during the arctic night from a suite of sensors at sheba. In: Third symposium on integrated observing systems America Meteorological Society, Dallas, TX
    33. Persson P, Fairall C, Andreas E, Guest P, Perovich D (2002) Measurements near the atmospheric surface flux group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(10.1029)
    34. Pithan F, Mauritsen T (2013) Statistical artifacts in 鈥機urrent GCMs鈥?unrealistic negative feedback in the Arctic鈥?by Bo茅 et聽al. J Clim. doi:10.1175/JCLI-D-12-00331.1
    35. Rotstayn L, Ryan B, Katzfey J (2000) A scheme for calculation of the liquid fraction in mixed-phase stratiform clouds in large-scale models. Mon Wea Rev 128(4):1070鈥?088 CrossRef
    36. Schmidt G, Ruedy R, Hansen J, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y et聽al (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19(2):153鈥?92 CrossRef
    37. Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Giuseppe Fogli P, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Climate 24(16):4368鈥?384 CrossRef
    38. Serreze M, Schnell R, Kahl J (1992) Low-level temperature inversions of the Eurasian Arctic and comparisons with Soviet drifting station data. J Clim 5(6):615鈥?29 CrossRef
    39. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25鈥?5
    40. Solomon A, Shupe MD, Persson POG, Morrison H, Yamaguchi T, Feingold G, Caldwell PM, deBoer G (2013) The sensitivity of springtime Arctic mixed-phase stratocumulus clouds to surface layer and cloud-top inversion layer moisture sources. J Atmos Sci (under review)
    41. Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29(2):131鈥?56 CrossRef
    42. Sterk H, Steeneveld G, Holtslag A (2013) The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over arctic sea ice. J Geophys Res Atmos 118:1199鈥?217 CrossRef
    43. Stevens B, Crueger T, Esch M, Giorgetta M, Mauritsen T, Rast S, Schmidt H, Bader J, Block K, Brokopf R et聽al (2013) The atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst. doi:10.1002/jame.20015
    44. Stramler K, Del Genio A, Rossow W (2011) Synoptically driven Arctic winter states. J Clim 24(6):1747鈥?762 CrossRef
    45. Svensson G, Karlsson J (2011) On the Arctic wintertime climate in global climate models. J Clim 24(22):5757鈥?771 CrossRef
    46. Sverdrup H (1933) Meteorology, The Norwegian North Polar expedition with the 鈥橫aud鈥?1918鈥?925, scientific results, vol II. Geophysical Institute, Bergen
    47. Taylor K, Stouffer R, Meehl G (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485 CrossRef
    48. Tjernstr枚m M (2012) The Arctic Ocean boundary layer: Interactions with the sea-ice surface and clouds. In: ECMWF GABLS workshop on diurnal cycles and the stable boundary layer, 7-10 November 2011, European Centre for Medium-Range Weather Forecasts
    49. Tjernstr枚m M, Graversen R (2009) The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quart J R Meteorol Soc 135(639):431鈥?43 CrossRef
    50. Turner JK, Gyakum JR (2011) The development of Arctic Air Masses in Northwest Canada and their behaviour in a warming climate. J Clim 24:4818鈥?633. doi:10.1175/2011JCLI3855.1
    51. UCAR/NCAR/CISL/VETS (2012) The NCAR command language (Version 6.0.0) [Software]. doi:10.5065/D6WD3XH5
    52. Uppala S, K氓llberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G et聽al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131(612):2961鈥?012 CrossRef
    53. Volodin E, Dianskii N, Gusev A (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46(4):414鈥?31 CrossRef
    54. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et聽al (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845鈥?72 CrossRef
    55. Wegener A (1911) Thermodynamik der Atmosph盲re. JA Barth, Leipzig
    56. Wexler H (1936) Cooling in the lower atmosphere and the structure of polar continental air. Mon Wea Rev 64:122鈥?36 CrossRef
    57. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34(1):123鈥?47 CrossRef
    58. Xie S, McCoy R, Klein S, Cederwall R, Wiscombe W, Jensen M, Johnson K, Clothiaux E, Gaustad K, Long C et聽al (2010) CLOUDS AND MORE: ARM climate modeling best estimate data. Bull Am Meteorol Soc 91(1):13鈥?0 CrossRef
    59. Yukimoto S, Adachi Y, Hosaka M (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3: model description and basic performance (special issue on recent development on climate models and future climate projections). J Meteorol Soc Jpn 90:23鈥?4 CrossRef
    60. Zhang Y, Seidel D, Golaz J, Deser C, Tomas R (2011) Climatological characteristics of Arctic and Antarctic surface-based inversions. J Clim 24(19):5167鈥?186 CrossRef
  • 作者单位:Felix Pithan (1) (2)
    Brian Medeiros (3)
    Thorsten Mauritsen (1)

    1. Max-Planck-Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
    2. International Max Planck Research School on Earth System Modelling, Hamburg, Germany
    3. National Center for Atmospheric Research, Boulder, CO, USA
  • ISSN:1432-0894
文摘
Temperature inversions are a common feature of the Arctic wintertime boundary layer. They have important impacts on both radiative and turbulent heat fluxes and partly determine local climate-change feedbacks. Understanding the spread in inversion strength modelled by current global climate models is therefore an important step in better understanding Arctic climate and its present and future changes. Here, we show how the formation of Arctic air masses leads to the emergence of a cloudy and a clear state of the Arctic winter boundary layer. In the cloudy state, cloud liquid water is present, little to no surface radiative cooling occurs and inversions are elevated and relatively weak, whereas surface radiative cooling leads to strong surface-based temperature inversions in the clear state. Comparing model output to observations, we find that most climate models lack a realistic representation of the cloudy state. An idealised single-column model experiment of the formation of Arctic air reveals that this bias is linked to inadequate mixed-phase cloud microphysics, whereas turbulent and conductive heat fluxes control the strength of inversions within the clear state.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700