Characterization of the Marine Boundary Layer and the Trade-Wind Inversion over the Sub-tropical North Atlantic
详细信息    查看全文
  • 作者:J. Carrillo ; J. C. Guerra ; E. Cuevas ; J. Barrancos
  • 关键词:Marine boundary layer ; Radiosondes ; Subsidence ; Sub ; tropical troposphere ; Temperature inversion ; Trade ; wind inversion
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:158
  • 期:2
  • 页码:311-330
  • 全文大小:1,962 KB
  • 参考文献:Albrecht BA (1984) A model study of downstream variations of the thermodynamic structure of the trade winds. Tellus 36A:187–202CrossRef
    Alappattu DP, Kunhikrishnan PK (2010) Observations of the thermodynamic structure of marine atmospheric boundary layer over Bay of Bengal, Northern Indian Ocean and Arabian Sea during premonsoon period. J Atmos Sol Terr Phy 72:1318–1326. doi:10.​1016/​j.​jastp.​2010.​07.​011 CrossRef
    Arya SP (1988) Introduction to micrometeorology. Academic Press Inc./Harcourt Brace Jovanovich Publishers, San Diego, CA: 307 pp
    Augstein E, Riehl H, Ostapoff F, Wagner V (1973) Mass and energy transports in an undisturbed atlantic trade-wind flow. Mon Weather Rev 101:101–111CrossRef
    Busch N, Ebel U, Kraus H, Schaller E (1982) The structure of the subpolar inversion-capped ABL. Arch Meteor Geophys Bioklimatol 31A:1–18CrossRef
    Cao G, Giambelluca TW, Stevens DE, Schroeder TA (2007) Inversion variability in the Hawaiian trade wind regime. J Clim 20:1145–1160CrossRef
    Ciesielski PE, Schubert WH, Johnson RH (2001) Diurnal variability of the marine boundary layer during ASTEX. J Atmos Sci 58:2355–2376CrossRef
    Cuevas E (1995) Estudio del comportamiento del ozono troposférico en el observatorio de Izaña (Tenerife) y su relación con la dinámica atmosférica. Ph D Thesis, Universidad Complutense de Madrid
    Cuevas E, González Y, Rodríguez S, Guerra JC, Gómez-Peláez AJ, Alonso-Pérez S, Bustos J, Milford C (2013) Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos Chem Phys 13:1973–1998CrossRef
    Dorta P (1994) Las inversiones térmicas en canarias. Investigaciones Geográficas 1996(15):109–126
    Dunion JP, Marron CS (2008) A reexamination of the Jordan mean tropical sounding based on awareness of the Saharan Air Layer: results from 2002. J Clim 21:5242–5253CrossRef
    Goudie AS, Middleton NJ (2001) Saharan dust storms: nature and consequences. Earth Sci Rev 56:179CrossRef
    Grindinger CM (1992) Temporal variability of the trade wind inversion: measured with a boundary layer vertical profiler. MS thesis, Department of Meteorology, University of Hawaii at Manoa, 93 pp
    Gutnick M (1958) Climatology of the trade-wind inversion in the Caribbean. Bull Am Meteorol Soc 39:410–420
    Hartmann D, Ockert-Bell M, Michelsen M (1992) The effect of cloud type on Earth’s energy balance: global analysis. J Clim 5:1281–1304CrossRef
    Hodge MW (1956) Superadiabatic lapse rates of temperature in radiosonde observations. Mon Weather Rev 84:103–106CrossRef
    Hoskins BJ, Draghici I, Davies HC (1978) A new look at the \(\upomega \) -equation. Q J R Meteorol Soc 104:31–38CrossRef
    Jaatinen J, Kajosaari S (2000) Loran-C based windfinding in Meteorology. 29th annual convention & technical syposium of the international LORAN association (ILA). November 13–15, 2000, Washington DC
    Johnson RH, Ciesielski PE, Kenneth AH (1995) Tropical inversions near the \(0\,^{{\circ }}\text{ C }\) level. J Atmos Sci 53(13):1838–1855CrossRef
    Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418CrossRef
    Karlsson J, Svensson G, Cardoso S, Teixeira J, Paradise S (2010) Subtropical cloud-regime transitions: boundary layer depth and cloud-top height evolution in models and observations. J Appl Meteorol Climatol 49(9):1845–1858. doi:10.​1175/​2010JAMC2338.​1 CrossRef
    Klein SA (1997) Synoptic variability of low-cloud properties and meteorological parameters in the subtropical trade wind boundary layer. J Climate 10(2018–2039):2018. doi:10.​1175/​1520-0442(1997)010:​SVOLCP.​2.​0.​CO;2 CrossRef
    Kloesel KA, Albrecht BA (1989) Low-level inversions over the tropical Pacific-thermodynamic structure of the boundary layer and the above-inversion moisture structure. Mon Weather Rev 117:87–101CrossRef
    Ma CC, Mechoso CR, Robertson A, Arakawa A (1996) Peruvian stratus clouds and the tropical Pacific circulation: a coupled ocean-atmosphere GCM study. J Clim 9:1635–1645CrossRef
    Malkus JS (1956) On the maintenance of the trade winds. Tellus 8:335–350CrossRef
    Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:52–54CrossRef
    Martín JL, Bethencourt J, Cuevas-Agulló E (2012) Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Climatic change. doi:10.​1007/​s10584-012-0407-7
    Marzol MV (2001) El Clima. In: Fernández-Palacios JM, Martín-Esquivel JL (eds) “Naturaleza de las Islas Canarias. Ecología y conservación”. Publicaciones Turquesa, S/C de Tenerife: pp 87–93
    Marzol MV, Yanes A, Romero C, Brito de Azevedo E, Prada S, Martins A (2006) Caratéristiques des précipitations dans les îles de la Macaronesia (Açores, Madére, Canaries et Cap Vert). XIX Colloque de l’Association Internationale de Climatologie, Épernay (Francia), pp 415–420
    Mestre-Barceló A, Chazarra-Bernabé A, Pires V, Cunha S, Silva A, Marques J, Carvalho F, Mendes M, Neto J (2012) Climate atlas of the Archipelagos of the Canary Islands, Madeira and Azores. Air temperature and precipitation (1971–2000). Agencia Estatal de Meteorología and Instituto de Meteorologia de Portugal (eds), 80 pp, NIPO: 281-12-006-X
    Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216CrossRef
    Poon HT, Kwok YH, Sin KC (2000) Comparison of LORAN-C and GPS radiosonde measurements in Hong Kong. Technical Note No. 98, Hong Kong Observatory: 21 pp
    Press WH, Teukolshy SA, Vetterling WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, Cambridge 963 pp
    Priestly MB (1994) Spectral analysis and time series. Academic Press, London 890 pp
    Philander S, Gu D, Halpern D, Lambert G, Lau NC, Li T, Pacanowski R (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972CrossRef
    Prospero JM, Carlson TN (1981) Saharan air outbreaks over the tropical North Atlantic. Pure Appl Phys 119:667–691
    Rémillard J, Kollias P, Luke E, Wood R (2012) Marine boundary layer cloud observations in the Azores. J Clim 25:7381–7398. doi:10.​1175/​JCLI-D-11-00610.​1 CrossRef
    Riehl H (1979) Climate and weather in the tropics. Academic Press, London 623 pp
    Rodríguez S (1999) Comparación de las variaciones de ozono superficial asociadas a procesos de transporte sobre y bajo la inversión de temperatura subtropical en Tenerife. Degree Dissertation, University of La Laguna, Tenerife, Canary Islands, Spain
    Rodríguez S, Alastuey A, Alonso-Pérez S, Querol X, Cuevas E, Abreu-Afonso J, Viana M, Pérez N, Pandolfi M, de la Rosa (2011) Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos Chem Phys 11:6663–6685. doi:10.​5194/​acp-11-6663-2011 CrossRef
    Rouault M, Lee-Thorp AM, Lutjeharms JRE (1999) The Atmospheric Boundary Layer above the Agulhas current during alongcurrent winds. J Phys Oceanogr 30:40–50CrossRef
    Santos FD, Valente MA, Miranda PMA, Azevedo EB, Tome AR, Coelho F (2004) Climate change scenarios in the Azores and Madeira Islands. World Res Rev 16(4):473–491
    Schubert WH, Ciesielski PE, Richardson CL, Johnson H (1995) Dynamical adjustment of the trade wind inversion layer. J Atmos Sci 52(16):2941–2952CrossRef
    Seibert P, Beyrich F, Gryning SE, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34:1001–1027CrossRef
    Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24
    Sempreviva AM, Gryning SE (2000) Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Boundary-Layer Meteorol 97:273–291CrossRef
    Slonaker RL, Schwartz BE, Emery WJ (1996) Occurrence of nonsurface superadiabatic lapse rates within RAOB data. Wea Forecast 11:350–359CrossRef
    Schultz DM, Schumacher PN, Doswell CA (2000) The intricacies of instabilities. Mon Weather Rev 128:4143–4148CrossRef
    Stone PH, Carlson JH (1979) Atmospheric lapse rate regimes and their parameterization. J Atmos Sci 36:415–423CrossRef
    Stull RB (1988) An introduction to boundary-layer meteorology. Kluwer, Dordrecht: 670 pp
    Sun DZ, Lindzen RS (1993) Distribution of tropical troposphericwater vapor. J Atmos Sci 50:1643–1660CrossRef
    Sutcliffe RC (1947) A contribution to the problem of development. Q J R Meteorol Soc 73:370–383CrossRef
    Tran LT (1995) Relationship between the inversion and rainfall on the Island of Maui. MS thesis, Department of Geography, University of Hawaii at Manoa: 115 pp
    Tullot F (1956) El tiempo atmosférico de las Islas Canarias. Publicaciones Serie A (Memorias) del Instituto Nacional de Meteorología 26:15–23
    Von Engeln A, Teixeira J, Wickert J, Buehler SA (2005) Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer. Geophys Res Lett 32:L06815. doi:10.​1029/​2004GL022168
    Wang J, Rossow WB (1995) Determination of cloud vertical structure from upper-air observations. J Appl Meteorol 34:2243–2258CrossRef
    Wood R, Bretherton CS (2006) On the relationship between stratiform low cloud cover and lower-tropospheric stability. J Clim 19:6425–6432. doi:10.​1175/​JCLI3988.​1 CrossRef
    Yuter SE, Houze RA Jr (1995) Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: frecuency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Weather Rev 123:1941–1963CrossRef
    Zhang YH, Zhang SD, Yi F (2009) Intensive radiosonde observations of lower tropospheric inversion layers over Yichang, China. J Atmos Sol Terr Phys 71:180–190. doi:10.​1016/​j.​jastp.​2008.​10.​008 CrossRef
  • 作者单位:J. Carrillo (2)
    J. C. Guerra (2)
    E. Cuevas (1) (2)
    J. Barrancos (3)

    2. Hydrometeorology Research Group (GRIHM), La Laguna University (ULL), Santa Cruz de Tenerife, Spain
    1. Izaña Atmospheric Research Centre (IARC), Agencia Estatal de Meteorología (AEMET), Santa Cruz de Tenerife, Spain
    3. Environmental Research Division, Instituto Tecnológico de Energías Renovables (ITER), Granadilla de Abona, Spain
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
The stability of the lower troposphere along the east side of the sub-tropical North Atlantic is analyzed and characterized using upper air meteorological long-term records at the Canary Islands (Tenerife), Madeira (Madeira) and Azores (Terceira) archipelagos. The most remarkable characteristic is the strong stratification observed in the lower troposphere, with a strengthening of stability centred at levels near 900 and 800 hPa in a significant percentage of soundings (ranging from 17 % in Azores to 33 % in Güimar, Canary Islands). We show that this double structure is associated with the top of the marine boundary layer (MBL) and the trade-wind inversion (TWI) respectively. The top of the MBL coincides with the base of the first temperature inversion (\(\approx \)900 hPa) where a sharp change in water vapour mixing ratio is observed. A second temperature inversion is found near 800 hPa, which is characterized by a large directional wind shear just above the inversion layer, tied to the TWI. We find that seasonal and latitudinal variations of the height and strength of both temperature inversions are driven by large-scale subsiding air from the upper troposphere associated with the descent branch of the Hadley cell. Increased general subsidence in summertime enhances stability in the lower troposphere, more markedly in the southern stations, where the inversion-layer heights are found at lower levels enhancing the main features of these two temperature inversions. A simple conceptual model that explains the lower tropospheric inversion enhancement by subsidence is proposed. Keywords Marine boundary layer Radiosondes Subsidence Sub-tropical troposphere Temperature inversion Trade-wind inversion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700