Optimal aquifers and reservoirs for CCS and EOR in the Kingdom of Saudi Arabia: an overview
详细信息    查看全文
  • 作者:M. M. Jaju ; F. H. Nader ; F. Roure ; L. Matenco
  • 刊名:Arabian Journal of Geosciences
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:9
  • 期:12
  • 全文大小:5,925 KB
  • 刊物类别:Earth and Environmental Science
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-7538
  • 卷排序:9
文摘
An overview on the tectono-stratigraphic framework of the Arabian plate indicates obvious differences between two distinct areas: the hydrocarbon-prolific sector and non-hydrocarbon-prolific sector. These differences resulted from the interplay of a variety of factors; some of which are related to the paleo-geographic configuration (eustatic sea level fluctuations, climatic conditions, and salt Basins), others to differential subsidence (burial) and structural inversions. During the Paleozoic, the regional compression was caused by far field effects of the Hercynian orogeny. This led to major folded structures in central and eastern Saudi Arabia (e.g. Ghawar anticline). During the Mesozoic, the most important tectonic factor was the stretching of the crust (extension), accompanied with the increase in temperature, resulting in an increase of the accommodation space, and thicker sedimentary successions. Regional unconformities are mostly found where folded structures are dominant, and they acted as a carrier systems for the accumulation of hydrocarbon and groundwater. A good understanding of the stratigraphy and tectonic evolution is, thus, required to develop carbon capture and storage (CCS) and to design efficiently enhanced oil recovery (EOR) in both sectors. Oil and gas reservoirs offer geologic storage potential as well as the economic opportunity of better production through CO2-EOR. The world greatest hydrocarbon reservoirs mainly consist of Jurassic carbonate rocks, and are located around the Arabian Basin (including the eastern KSA and the Arabian Gulf). The Cretaceous reservoirs, which mainly consist of calcarenite and dolomite, are located around the Gotnia salt Basin (northeast of KSA). Depleted oil and gas fields, which generally have proven as geologic traps, reservoirs and seals, are ideal sites for storage of injected CO2. Each potential site for CO2-EOR or CCS should be evaluated for its potential storage with respect to the containment properties, and to ensure that conditions for safe and effective long term storage are present. The secured deep underground storage of CO2 implies appropriate geologic rock formations with suitable reservoir rocks, traps, and impermeable caprocks. Proposed targets for CCS, in the non-hydrocarbon-prolific sector, are Kharij super-aquifer (Triassic), Az-Zulfi aquifer (Middle Jurassic), Layla aquifer (Late Jurassic), and Wasia aquifer (Middle Cretaceous). Proposed targets for EOR are Safaniya oil field (Middle Cretaceous) (Safaniya, Wara and Khafji reservoirs), Manifa oil field (Las, Safaniya and Khafji reservoirs) (Late Jurassic), and Khuff reservoir (Late Permian-Early Triassic) in central to eastern KSA.KeywordsTectono-stratigraphyHydrocarbon/non-hydrocarbon-prolific sectorsPaleoclimateEOR & CCSArabian plateKSA

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700