Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order
详细信息    查看全文
  • 作者:P. Krooß ; P. M. Kadletz ; C. Somsen ; M. J. Gutmann…
  • 关键词:Shape memory alloy (SMA) ; Martensitic phase transformation ; Functional degradation ; Martensite stabilization ; Superelasticity
  • 刊名:Shape Memory and Superelasticity
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:2
  • 期:1
  • 页码:37-49
  • 全文大小:1,775 KB
  • 参考文献:1.Otsuka K, Wayman CM (eds) (1999) Shape memory materials. Cambridge University Press, Cambridge
    2.Ma J, Karaman I, Noebe RD (2010) High temperature shape memory alloys. Int Mater Rev 55:257–315CrossRef
    3.Lagoudas D (ed) (2008) Shape memory alloys—modeling and engineering applications. Springer, New York
    4.Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378:16–23CrossRef
    5.Duerig TW, Melton KN, Stoeckel D, Wayman CM (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London
    6.Krooß P, Somsen C, Niendorf T, Schaper M, Karaman I, Chumlyakov Y, Eggeler G, Maier HJ (2014) Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Mater 79:126–137CrossRef
    7.Krooß P, Holzweissig MJ, Niendorf T, Somsen C, Schaper M, Chumlyakov YI, Maier HJ (2014) Thermal cycling behavior of an aged FeNiCoAlTa single crystal shape memory alloy. Scripta Mater 81:28–31CrossRef
    8.Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S (2009) Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater 57:1068–1077CrossRef
    9.Buenconsejo PJS, Kim HY, Miyazaki S (2009) Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater 57:2509–2515CrossRef
    10.Hsieh SF, Wu SK (1998) A study on lattice parameters of martensite in Ti50.5-xNi49.5Zrx shape memory alloys. J Alloy Compd 270:237–241CrossRef
    11.Han XD, Zou WH, Wang R, Zhang Z, Yang DZ (1996) Structure and substructure of martensite in a Ti36.5Ni48.5Hf15 high temperature shape memory alloy. Acta Mater 44:3711–3721CrossRef
    12.König D, Zarnetta R, Savan A, Brunken H, Ludwig A (2011) Phase transformation, structural and functional fatigue properties of Ti-Ni-Hf shape memory thin films. Acta Mater 59:3267–3275CrossRef
    13.Xu Y, Shimizu S, Suzuki Y, Otsuka K, Ueki T, Mitose K (1997) Recovery and recrystallization processes in Ti–Pd–Ni high-temperature shape memory alloys. Acta Mater 45:1503–1511CrossRef
    14.Kovarik L, Yang F, Garg A, Diercks D, Kaufman M, Noebe RD, Mills MJ (2010) Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys. Acta Mater 58:4660–4673CrossRef
    15.Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2006) Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Mater 55:663–666CrossRef
    16.Dadda J, Maier HJ, Karaman I, Karaca HE, Chumlyakov YI (2010) Tension—compression asymmetry in Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Int J Mater Res 101:1503–1513CrossRef
    17.Dadda J, Maier HJ, Niklasch D, Karaman I, Karaca HE, Chumlyakov YI (2008) Pseudoelasticity and cyclic stability in Co49Ni21Ga30 shape-memory alloy single crystals at ambient temperature. Mater Trans A 39:2026–2039CrossRef
    18.Meyer D, Maier HJ, Dadda J, Karaman I, Karaca HE (2006) Thermally and stress-induced martensitic transformation in Co-Ni-Al ferromagnetic shape memory alloy single crystals. Mater Trans A 383–440:875–878
    19.Niendorf T, Dadda J, Lackmann J, Monroe JA, Karaman I, Panchenko E, Karaca HE, Maier HJ (2013) Tension—compression asymmetry in Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Mater Sci For 82:738–739
    20.Kireeva IV, Picornell C, Pons J, Kretinina IV, Chumlyakov YI, Cesari E (2014) Effect of oriented γ´ precipitates on shape memory effect and superelasticity in Co–Ni–Ga single crystals. Acta Mater 68:127–139CrossRef
    21.Kireeva IV, Pons J, Picornell C, Chumlyakov YI, Cesari E, Kretinina IV (2013) Influence of γ´ nanometric particles on martensitic transformation and twinning structure of L10 martensite in CoeNieGa ferromagnetic shape memory single crystals. Intermetallics 35:60–66CrossRef
    22.Monroe JA, Karaman I, Karaca HE, Chumlyakov YI, Maier HJ (2010) High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scripta Mater 62:368–371CrossRef
    23.Benafan O, Garg A, Noebe RD, Bigelow GS, Padula SA II, Gaydosh DJ, Schell N, Mabe JH, Vaidyanathan R (2014) Mechanical and functional behavior of a Ni-rich Ni50.3Ti 29.7Hf20 high temperature shape memory alloy. Intermetallics 50:94–107CrossRef
    24.Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2014) Microstructural characterization and superelastic response of a Ni 50.3Ti29.7Zr20 high-temperature shape memory alloy. Scripta Mater 81:12–15CrossRef
    25.Belbasi M, Salehi MT, Mousavi SAAA, Ebrahimi SM (2013) A study on the mechanical behavior and microstructure of NiTiHf shape memory alloy under hot deformation. Mater Sci Eng A 560:96–102CrossRef
    26.Niendorf T, Krooß P, Batyrsina E, Paulsen A, Frenzel J, Eggeler G, Maier HJ (2014) On the functional degradation of binary titanium-tantalum high-temperature shape memory alloys—a new concept for fatigue life extension. Funct Mater Lett 7:1450042CrossRef
    27.Niendorf T, Krooß P, Batyrsina E, Paulsen A, Motemani Y, Ludwig A, Buenconsejo P, Frenzel J, Eggeler G, Maier HJ (2014) Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT SMAs). Mater Sci Eng A 620:359–366CrossRef
    28.Niendorf T, Krooß P, Somsen C, Rynko R, Paulsen A, Batyrsina E, Frenzel J, Eggeler G, Maier HJ (2015) Cyclic degradation of titanium-tantalum high-temperature shape memory alloys—the role of dislocation activity and chemical decomposition. Funct Mater Lett 8:1550062CrossRef
    29.Niendorf T, Krooß P, Somsen C, Eggeler G, Chumlyakov YI, Maier HJ (2015) Martensite aging—an avenue to new high temperature shape memory alloys. Acta Mater 89:298–304CrossRef
    30.Krooß P, Niendorf T, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, Schmahl WW, Eggeler G, Maier HJ (2015) Functional fatigue and tension—compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Memory Superelast 1:6–17CrossRef
    31.Kadletz PM, Krooß P, Chumlyakov YI, Gutmann MJ, Schmahl WW, Maier HJ, Niendorf T (2015) Martensite stabilization in shape memory alloys—experimental evidence for short-range ordering. Mater Lett 159:16–19CrossRef
    32.Ren X, Otsuka K (1997) Origin of rubber-like behavior in metal alloys. Nature 389:579–582CrossRef
    33.Keen DA, Gutmann MJ, Wilson CC (2006) SXD—the single-crystal diffractometer at the ISIS spallation neutron source. J Appl Cryst 39:714–722CrossRef
    34.Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276CrossRef
    35.Ungar T, Mughrabi H, Rönnpagel D, Wilkens M (1984) X-ray line
    oadening study of the dislocation cell structure in deformed [001]-orientated copper single crystals. Acta Metall 32:333–342CrossRef
    36.Gall K, Maier HJ (2002) Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater 50:4643–4657CrossRef
    37.Picornell C, Pons J, Cesari E, Chumlyakov YI, Dutkiewicz J (2009) Effect of aging under compressive stress along [100] in Co-Ni-Ga single crystals. Funct Mater Lett 2:83–86CrossRef
  • 作者单位:P. Krooß (1)
    P. M. Kadletz (2)
    C. Somsen (3)
    M. J. Gutmann (4)
    Y. I. Chumlyakov (5)
    W. W.  Schmahl (2)
    H. J. Maier (6) (7)
    T. Niendorf (1)

    1. Institut für Werkstofftechnik, Universität Kassel, 34125, Kassel, Germany
    2. Applied Crystallography, Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, 80333, Munich, Germany
    3. Institut für Werkstoffe, Ruhr-Universität Bochum, 44801, Bochum, Germany
    4. Rutherford Appleton Laboratory, ISIS Facility, Chilton Didcot, Oxfordshire, OX11 0QX, UK
    5. Siberian Physical Technical Institute, Tomsk State University, Novosobornay Square 1, Tomsk, Russia, 634050
    6. Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, 30823, Garbsen, Germany
    7. Zentrum für Festkörperchemie und Neue Materialien, Leibniz Universität Hannover, 30167, Hannover, Germany
  • 刊物类别:Characterization and Evaluation of Materials;
  • 刊物主题:Characterization and Evaluation of Materials;
  • 出版者:Springer International Publishing
  • ISSN:2199-3858
文摘
Conventional shape memory alloys (SMAs), such as binary Ni–Ti, are typically limited to service temperatures below 100 °C. Recent studies on Co–Ni–Ga high-temperature SMAs revealed the potential that these alloys can be used up to temperatures of about 400 °C. Analysis of the cyclic functional properties showed that degradation in these alloys is mainly triggered by intensive dislocation motion. However, data on the cyclic stress–strain response and the mechanisms leading to functional degradation of Co–Ni–Ga above 300 °C were missing in open literature. Current results reveal that above 300 °C diffusion-controlled mechanisms, e.g., precipitation of secondary phases and changes in the chemical degree of order, seem to dictate cyclic instability. Detailed neutron and transmission electron microscopy analyses following superelastic cycling in a temperature range of 200–400 °C were employed to characterize the changes in degradation behavior above 300 °C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700