Zero-Temperature Study of a Tetrameric Spin-1/2 Chain in a Transverse Magnetic Field
详细信息    查看全文
文摘
We consider an alternating Heisenberg spin-1/2 antiferromagnetic–ferromagnetic chain with the space-modulated dominant antiferromagnetic exchange and anisotropic ferromagnetic coupling (tetrameric spin-1/2 chain). The zero-temperature effect of a symmetry breaking transverse magnetic field on the model is studied numerically. It is found that the anisotropy effect on the ferromagnetic coupling induces two new gapped phases. We identified their orderings as a kind of the stripe antiferromagnetic phase. As a result, the magnetic phase diagram of the tetrameric chain shows five gapped quantum phases, and the system is characterized by four critical fields which mark quantum phase transitions in the ground state of the system with the changing transverse magnetic field. We have also exploited the well-known bipartite entanglement (name as concurrence) and global entanglement tools to verify the occurrence of quantum phase transitions and the corresponding critical points.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700