Degradation of ultrahigh concentration pollutant by Fe/Cu bimetallic system at high operating temperature
详细信息    查看全文
  • 作者:Bo Lai ; Qingqing Ji ; Yue Yuan ; Donghai Yuan…
  • 关键词:Operating Temperature ; High Concentration Pollutant ; Fe/Cu Bimetallic Particles ; Wastewater Treatment
  • 刊名:Korean Journal of Chemical Engineering
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:33
  • 期:1
  • 页码:207-215
  • 全文大小:778 KB
  • 参考文献:1.S. Collado, D. Quero, A. Laca and M. Díaz, Chem. Eng. J., 234, 484 (2013).CrossRef
    2.Z. B. Chen, H. C. Wang, N. Q. Ren, M. H. Cui, S. K. Nie and D. X. Hu, J. Hazard. Mater., 197, 49 (2011).CrossRef
    3.Y. Yang, P. Wang, S. J. Shi and Y. Liu, J. Hazard. Mater., 168, 238 (2009).CrossRef
    4.D. Fu, Y. H. Zhang, F. Z. Lv, P. K. Chu and J. W. Shang, Chem. Eng. J., 193-194, 39 (2012).CrossRef
    5.Q. L. Zhao, Z. F. Ye and M. H. Zhang, Chemosphere, 80, 947 (2010).CrossRef
    6.H. Cheng, W. Xu, J. Liu, H. Wang, Y. He and G. Chen, J. Hazard. Mater., 146, 385 (2007).CrossRef
    7.S. Chen, D. Sun and J. S. Chung, J. Hazard. Mater., 144, 577 (2007).CrossRef
    8.G. Moussavi, A. Bagheri and A. Khavanin, J. Hazard. Mater., 237-238, 147 (2012).CrossRef
    9.P. Ghosh, L. K. Thakur, A. N. Samanta and S. Ray, Korean J. Chem. Eng., 29, 1203 (2012).CrossRef
    10.P. S. Kumar, M. J. S. Raja, M. Kumaresan, D. K. Loganathan and P. Chandrasekaran, Korean J. Chem. Eng., 31, 276 (2014).CrossRef
    11.B. Lai, Z. Y. Chen, Y. X. Zhou, P. Yang, J. L. Wang and Z. Q. Chen, J. Hazard. Mater., 250-251, 220 (2013).CrossRef
    12.B. Lai, Y. H. Zhang, Z. Y. Chen, P. Yang, Y. X. Zhou and J. L. Wang, Appl. Catal. B-environ., 144, 816 (2014).CrossRef
    13.S. C. Ahn, S. Y. Oh and D. K. Cha, J. Hazard. Mater., 156, 17 (2008).CrossRef
    14.S. Y. Oh, P. C. Chiu, B. J. Kim and D. K. Cha, J. Hazard. Mater., 129, 304 (2006).CrossRef
    15.S. M. A. G. Ulson de Souza, E. Forgiarini and A. A. Ulson de Souza, J. Hazard. Mater., 147, 1073 (2007).CrossRef
    16.D. T. Sponza, J. Hazard. Mater., 138, 438 (2006).CrossRef
    17.V. Suryavathi, S. Sharma, S. Sharma, P. Saxena, S. Pandey, R. Grover, S. Kumar and K. P. Sharma, Reprod. Toxicol., 19, 547 (2005).CrossRef
    18.A. Ghauch, A. M. Tuqan, N. Kibbi and S. Geryes, Chem. Eng. J., 213, 259 (2012).CrossRef
    19.R. G. Saratale, G. D. Saratale, J. S. Chang and S. P. Govindwar, J. Taiwan Inst. Chem. E., 42, 138 (2011).CrossRef
    20.C. T. Wang, W. L. Chou, Y. M. Kuo and F. L. Chang, J. Hazard. Mater., 169, 16 (2009).CrossRef
    21.S. Wijetunga, X. F. Li and C. Jian, J. Hazard. Mater., 177, 792 (2010).CrossRef
    22.A. Ghauch and A. Tuqan, Chemosphere, 73, 751 (2008).CrossRef
    23.S. Caré, R. Crane, P. S. Calabrò, A. Ghauch, E. Temgoua and C. Noubactep, CLEAN-Soil, Air, Water, 41, 275 (2013).CrossRef
    24.M. F. Coughlin, B. K. Kinkle and P. L. Bishop, Chemosphere, 46, 11 (2002).CrossRef
    25.H. L. Lien and W. X. Zhang, Appl. Catal. B-environ., 77, 110 (2007).CrossRef
    26.P. L. Brezonik, Chemical kinetics and process dynamics in aquatic system, Lewis Publishers, New York (1994).
    27.S. J. Bransfield, D. M. Cwiertny, A. L. Rorerts and D. H. Fairbrother, Environ. Sci. Technol., 40, 1485 (2006).CrossRef
    28.W. Z. Yin, J. H. Wu, P. Li, X. D. Wang, N. W. Zhu, P. X. Wu and B. Yang, Chem. Eng. J., 184, 198 (2012).CrossRef
    29.W. Y. Xu, T. Y. Gao and J. H. Fan, J. Hazard. Mater., 123, 232 (2005).CrossRef
    30.M. F. Hou, F. B. Li, X. M. Liu, X. G. Wang and H. F. Wan, J. Hazard. Mater., 145, 305 (2007).CrossRef
    31.H. M. Hung, F. H. Ling and M. R. Hoffmann, Environ. Sci. Technol., 34, 1758 (2000).CrossRef
    32.A. Ghauch, H. A. Assi and A. Tuqan, J. Hazard. Mater., 176, 48 (2010).CrossRef
    33.Y. L. Jiao, C. C. Qiu, L. H. Huang, K. X. Wu, H. Y. Ma, S. H. Chen, L. M. Ma and D. L. Wu, Appl. Catal. B-environ., 91, 434 (2009).CrossRef
    34.Y. Xie, Z. Fang, X. Qiu, E. P. Tsang and B. Liang, Chemosphere, 108, 433 (2014).CrossRef
    35.L. M. Ma, Z. G. Ding, T. Y. Gao, R. F. Zhou, W. Y. Xu and J. Liu, Chemosphere, 55, 1207 (2004).CrossRef
    36.L. M. Ma and W. X. Zhang, Environ. Sci. Technol., 42, 5384 (2008).CrossRef
    37.S. J. Bransfield, D. M. Cwiertny, K. Livi and D. H. Fairbrother, Appl. Catal. B-environ., 76, 348 (2007).CrossRef
    38.M. Stylidi, D. I. Kondarides and X. E. Verykios, Appl. Catal. B-environ., 47, 189 (2004).CrossRef
    39.W. Feng, D. Nansheng and H. Helin, Chemosphere, 41, 1233 (2000).CrossRef
    40.A. Ghauch, G. Ayoub and S. Naim, Chem. Eng. J., 228, 1168 (2013).CrossRef
    41.A. Ghauch, Chemosphere, 72, 328 (2008).CrossRef
  • 作者单位:Bo Lai (1)
    Qingqing Ji (1)
    Yue Yuan (1)
    Donghai Yuan (2)
    Yuexi Zhou (3)
    Juling Wang (3)

    1. Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu, 610065, China
    2. Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
    3. Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Industrial Chemistry and Chemical Engineering
    Catalysis
    Materials Science
    Biotechnology
  • 出版者:Springer New York
  • ISSN:1975-7220
文摘
To investigate the degradation of high concentration pollutant by Fe/Cu bimetallic system at a high operating temperature, 10,000mg/L acid orange 7 (AO7) aqueous solution was treated by Fe/Cu bimetallic system at 80 oC. First, the effect of the operating temperature (30-80 °C) on the reactivity of Fe/Cu bimetallic particles was investigated thoroughly. Then, the studies on the effect of theoretical Cu mass loading, Fe/Cu dosage, stirring speed and initial pH on the reactivity of Fe/Cu bimetallic particles at a high temperature (i.e., 80 °C) were carried out, respectively. The degradation and transformation process of AO7 was studied by using COD, TOC and UV-Vis spectra. The results indicate that high concentration pollutant could be removed effectively by Fe/Cu bimetallic system at a high operating temperature. And the removal efficiencies of AO7 by Fe/Cu bimetallic system were in accordance with the pseudofirst- order model. Finally, it was observed that the high temperature could accelerate mass transport rate and overcome the high activation energy barrier to significantly improve the reactivity of Fe/Cu bimetallic particles. Therefore, the higher removal efficiency could be obtained by Fe/Cu system at a high operating temperature. Thus, the high operating temperature played a leading role in the degradation of high concentration pollutant.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700