Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures
详细信息    查看全文
  • 作者:Chuan Ting Wang (1)
    Alan G. Fox (2)
    Terence G. Langdon (1) (3)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:49
  • 期:19
  • 页码:6558-6564
  • 全文大小:880 KB
  • 参考文献:1. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881-81 CrossRef
    2. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893-79 CrossRef
    3. Islamgaliev RK, Kazyhanov VU, Shestakova LO, Sharafutdinov AV, Valiev RZ (2008) Microstructure and mechanical properties of titanium (Grade 4) processed by high-pressure torsion. Mater Sci Eng, A 493:190-94 CrossRef
    4. Semenova IP, Polyakov AV, Raab GI, Lowe TC, Valiev RZ (2012) Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform. J Mater Sci 47:7777-781. doi:10.1007/s10853-012-6675-9 CrossRef
    5. Balyanov A, Kutnyakova J, Amirkhanova NA, Stolyarov VV, Valiev RZ, Liao XZ, Zhao YH, Jiang YB, Xu HF, Lowe TC, Zhu YT (2004) Corrosion resistance of ultra fine-grained Ti. Scripta Mater 51:225-29 CrossRef
    6. Nie M, Wang CT, Qu M, Gao N, Wharton JA, Langdon TG (2014) The corrosion behaviour of commercial purity titanium processed by high-pressure torsion. J Mater Sci 49:2824-831. doi:10.1007/s10853-013-7988-z CrossRef
    7. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2012) Effect of grain size on the micro-tribological behaviour of pure titanium processed by high-pressure torsion. Wear 280-81:28-5 CrossRef
    8. Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG (2013) Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J Mech Behav Biomed Mater 17:166-75 CrossRef
    9. Wang CT, Escudeiro A, Polcar T, Cavaleiro A, Wood RJK, Gao N, Langdon TG (2013) Indentation and scratch testing of DLC-Zr coatings on ultrafine-grained titanium processed by high-pressure torsion. Wear 306:304-10 CrossRef
    10. Faghihi S, Azari F, Zhilyaev AP, Szpunar JA, Vali H, Tabrizian M (2007) Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials 28:3887-895 CrossRef
    11. Sordi VL, Ferrante M, Kawasaki M, Langdon TG (2012) Microstructure and tensile strength of grade 2 titanium processed by equal-channel angular pressing and by rolling. J Mater Sci 47:7870-876. doi:10.1007/s10853-012-6593-x CrossRef
    12. Valiev R (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nat Mater 3:511-16 CrossRef
    13. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 11:1880-890 CrossRef
    14. Kocks UF (1976) Laws of work-hardening and low-temperature creep. J. Eng. Mater. Tech. 98:76-5 CrossRef
    15. Estrin Y, Mecking H (1984) A unified phenomenological description of work-hardening and creep based on one-parameter models. Acta Mater 32:57-0 CrossRef
    16. Nes E (1997) Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci 41:129-93 CrossRef
    17. Hughes DA, Hansen N (2000) Microstructure and strength of nickel at large strains. Acta Mater 48:2985-004 CrossRef
    18. Mohamed FA, Dheda SS (2012) On the minimum grain size obtainable by high-pressure torsion. Mater Sci Eng, A 558:59-3 CrossRef
    19. Estrin Y, Toth LS, Molinari A, Brechet Y (1998) A dislocation-based model for all hardening stages in large strain deformation. Acta Mater 46:5509-522 CrossRef
    20. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng, A 528:8198-204 CrossRef
    21. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190-198 CrossRef
    22. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng, A 498:341-48 CrossRef
    23. Valiev RZ, Ivanisenko YuV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705-712 CrossRef
    24. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Structural refinement of low alloyed steels during severe plastic deformation. Mater Sci Eng, A 387-89:809-16 CrossRef
    25. Wetscher F, Pippan R, Sturm S, Kauffmann F, Scheu C, Dehm G (2006) TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metall Mater Trans A 37A:1963-968 CrossRef
    26. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) Strain gradient plasticity modeling of high-pressure torsion. J Mech Phys Solids 56:1186-202 CrossRef
    27. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scripta Mater 51:921-25 CrossRef
    28. Wang J, Horita Z, Furukawa M, Nemoto M, Tsenev NK, Valiev RZ, Ma Y, Langdon TG (1993) An investigation of ductility and microstructural evolution in an Al-3% Mg alloy with submicron grain size. J Mater Res 8:2810-818 CrossRef
    29. Oh-ishi K, Horita Z, Smith DJ, Langdon TG (2001) Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing. J Mater Res 16:583-89 CrossRef
    30. Ahuja R, Wills JM, Johansson B, Eriksson O (1993) Crystal structures of Ti, Zr and Hf under compression: theory. Phys. Rev. B 48:16269-6279 CrossRef
    31. Todaka Y, Sasaki J, Moto T, Umemoto M (2008) Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining. Scripta Mater 59:615-18 CrossRef
    32. Ivanisenko Y, Kilmametov A, R?sner H, Valiev RZ (2008) Evidence of α?→??phase transition in titanium after high pressure torsion. Int J Mater Res 99:36-1 CrossRef
    33. Edalati K, Matsubara E, Horita Z (2009) Processing pure Ti by high-pressure torsion in wide range of pressure and strain. Metall Mater Trans A 40A:2079-086 CrossRef
    34. Sakai G, Horita Z, Langdon TG (2005) Grain refinement and superplasticity in an aluminium alloy processed by high-pressure torsion. Mater Sci Eng A393:344-51 CrossRef
    35. Lee S, Edalati K, Horita Z (2010) Microstructures and mechanical properties of pure V and Mo processed by high-pressure torsion. Mater Trans 51:1072-079 CrossRef
    36. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753-65 CrossRef
    37. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Structure of Cu deformed by high pressure torsion. Acta Mater 53:393-02 CrossRef
    38. Langdon TG (2007) The principles of grain refinement in equal-channel angular pressing. Mater Sci Eng A462:3-1 CrossRef
    39. Philibert J (1991) Atom movements: diffusion and mass transport in solids. Editions de Physique, Les Ulis, France, p 110
    40. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scripta Mater 46:575-80 CrossRef
    41. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu-Zr alloy processed using different SPD techniques. J Mater Sci 48:4653-660. doi:10.1007/s10853-012-7072-0 CrossRef
    42. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng, A 596:52-8 CrossRef
    43. Pereira PHR, Figueiredo RB, Huang Y, Cetlin PR, Langdon TG (2014) Modeling the temperature rise in high-pressure torsion. Mater Sci Eng, A 593:185-88 CrossRef
  • 作者单位:Chuan Ting Wang (1)
    Alan G. Fox (2)
    Terence G. Langdon (1) (3)

    1. Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-1453, USA
    2. Mechanical Engineering Department, Asian University, 89 Moo 12, Highway 331, Banglamung, Chon Buri, 20260, Thailand
    3. Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
  • ISSN:1573-4803
文摘
A grade 2 commercially pure (CP) titanium was processed by high-pressure torsion (HPT) at pressures of 3.0 and 6.0?GPa in order to achieve improved strengths. The microhardness values for these Ti samples were plotted against the imposed strain, and the plots show that a higher saturation microhardness of 320?Hv is achieved for the sample processed at 6.0?GPa compared to a microhardness of 305?Hv when using a pressure of 3.0?GPa. The omega ω-phase has been reported in some earlier HPT investigations of pure titanium, but it was not detected in this investigation even after processing at 6.0?GPa. The absence of the ω-phase is attributed to the relatively high level of oxygen (0.25 wt%) in these CP titanium samples. The higher saturation hardness for the 6.0?GPa sample is consistent with the smaller average grain size of ~105?±?12?nm compared with the measured grain size of ~130?±?18?nm after processing with an imposed pressure of 3.0?GPa.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700