Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later
详细信息    查看全文
  • 作者:Ruslan Z. Valiev ; Yuri Estrin ; Zenji Horita ; Terence G. Langdon
  • 刊名:JOM Journal of the Minerals, Metals and Materials Society
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:68
  • 期:4
  • 页码:1216-1226
  • 全文大小:1,992 KB
  • 参考文献:1.R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, JOM 58 (4), 33 (2006).CrossRef
    2.M.J. Zehetbauer and Y.T. Zhu, eds., Bulk Nanostructured Materials (Weinheim: Wiley, 2009).
    3.Y.T. Zhu, R.Z. Valiev, T.G. Langdon, N. Tsuji, and K. Lu, MRS Bull. 35, 977 (2010).CrossRef
    4.D. Raabe, P.P. Choi, Y.J. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, and D. Embury, MRS Bull. 35, 982 (2010).CrossRef
    5.R.Z. Valiev and T.G. Langdon, Metall. Mater. Trans. A 42A, 2942 (2011).CrossRef
    6.S.H. Whang, ed., Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications (Cambridge: Woodhead, 2011).
    7.X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, Mater. Sci. Eng. A 540, 1 (2012).CrossRef
    8.R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, and T.G. Langdon, JOM 64, 1134 (2012).CrossRef
    9.Y. Estrin and A. Vinogradov, Acta Mater. 61, 782 (2013).CrossRef
    10.T.G. Langdon, Acta Mater. 61, 7035 (2013).CrossRef
    11.A. Bachmaier and R. Pippan, Int. Mater. Rev. 58, 41 (2013).CrossRef
    12.R.Z. Valiev, A.P. Zhilyaev, and T.G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Hoboken: Wiley, 2014).
    13.R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Mater. Res. Lett. 4, 1 (2016).CrossRef
    14.K. Edalati and Z. Horita, Mater. Sci. Eng. A 652, 325 (2016).CrossRef
    15.R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, J. Mater. Res. 17, 5 (2002).CrossRef
    16.X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, PNAS (2016).
    17.Y.T. Zhu, X.Z. Liao, and X.L. Wu, Prog. Mater. Sci. 57, 1 (2012).CrossRef
    18.K. Lu, Science 345, 1455 (2014).CrossRef
    19.Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon, Appl. Phys. Lett. 89, 121906 (2006).CrossRef
    20.Y.H. Zhao, Y.T. Zhu, and E.J. Lavernia, Adv. Eng. Mater. 12, 769 (2010).CrossRef
    21.Y.H. Zhao, J.E. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Adv. Mater. 18, 2949 (2006).CrossRef
    22.W.W. Jian, G.M. Cheng, W.Z. Xu, C.C. Koch, Q.D. Wang, Y.T. Zhu, and S.N. Mathaudhu, Appl. Phys. Lett. 103, 133108 (2013).CrossRef
    23.W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013).CrossRef
    24.Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Adv. Mater. 18, 2280 (2006).CrossRef
    25.Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia, Appl. Phys. Lett. 92, 081903 (2008).CrossRef
    26.P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 51, 7 (2016).CrossRef
    27.T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 50, 3549 (2015).
    28.X. Zhang, H. Wang, R.O. Scattergood, J. Narayan, C.C. Koch, A.V. Sergueeva, and A.K. Mukherjee, Acta Mater. 50, 4823 (2002).CrossRef
    29.R.Z. Valiev, M.Y. Murashkin, A. Kilmametov, B. Straumal, N.Q. Chinh, and T.G. Langdon, J. Mater. Sci. 45, 4718 (2010).CrossRef
    30.Y. Beygelzimer, Y. Estrin, and R. Kulagin, Adv. Eng. Mater. 17, 1853 (2015).CrossRef
    31.A.P. Zhilyaev and T.G. Langdon, Prog. Mater Sci. 53, 893 (2008).CrossRef
    32.G. Sakai, K. Nakamura, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 406, 268 (2005).CrossRef
    33.A. Hohenwarter, A. Bachmaier, B. Gludovatz, S. Scheriau, and R. Pippan, Int. J. Mater. Res. 100, 1653 (2009).CrossRef
    34.A. Hohenwarter, Mater. Sci. Eng. A 626, 80 (2015).CrossRef
    35.K. Edalati and Z. Horita, J. Mater. Sci. 45, 4578 (2010).CrossRef
    36.K. Oh-ishi, K. Edalati, H.S. Kim, K. Hono, and Z. Horita, Acta Mater. 61, 3482 (2013).CrossRef
    37.B. Ahn, A.P. Zhilyaev, H.J. Lee, M. Kawasaki, and T.G. Langdon, Mater. Sci. Eng. A 635, 109 (2015).CrossRef
    38.R.B. Figueiredo, P.H.R. Pereira, M.T.P. Aguilar, P.R. Cetlin, and T.G. Langdon, Acta Mater. 60, 3190 (2012).CrossRef
    39.H.J. Lee, S.K. Lee, K.H. Jung, G.A. Lee, B. Ahn, M. Kawasaki, and T.G. Langdon, Mater. Sci. Eng. A 630, 90 (2015).CrossRef
    40.B. Ahn, H.J. Lee, I.C. Choi, M. Kawasaki, J.I. Jang, and T.G. Langdon, Adv. Eng. Mater. (2016). doi:10.​1002/​adem.​201500520 .
    41.M. Kawasaki, B. Ahn, H.J. Lee, A.P. Zhilyaev, and T.G. Langdon, J. Mater. Res. 31, 88 (2016).
    42.X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T.T. Zhu, Proc. Natl. Acad. Sci. USA 111, 7197 (2014).CrossRef
    43.K. Lu, Science 328, 319 (2010).CrossRef
    44.P.L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge: Cambridge University Press, 1987).CrossRef
    45.Y. Zhang, Y.S. Li, N.R. Tao, and K. Lu, Appl. Phys. Lett. 91, 211901 (2007).CrossRef
    46.Y. Champion and Y. Brechet, Adv. Eng. Mater. 12, 798 (2010).CrossRef
    47.N. Takata, S.H. Lee, and N. Tsuji, Mater. Lett. 63, 1757 (2009).CrossRef
    48.A. Vinogradov, Y. Suzuki, T. Ishida, K. Kitagawa, and V.I. Kopylov, Mater. Trans. 45, 2187 (2004).CrossRef
    49.M.Y. Murashkin, I. Sabirov, X. Sauvage, and R.Z. Valiev, J. Mater. Sci. 51, 33 (2016).CrossRef
    50.F. Kiessling, P. Nefzger, J.F. Nolasco, and U. Kaintzyk, Overhead Power Lines: Planning, Design, Construction (Berlin: Springer, 2003).CrossRef
    51.R.Z. Valiev, M.Y. Murashkin, and I. Sabirov, Scripta Mater. 76, 13 (2014).CrossRef
    52.R.K. Islamgaliev, K.M. Nesterov, J. Bourgon, Y. Champion, and R.Z. Valiev, J. Appl. Phys. 115, 194301 (2014).CrossRef
    53.EN 50183, Overhead Power Line Conductors: Bare Conductors of Aluminium Alloy with Magnesium and Silicon Content (Bruxelles: European Committee for Standardization (CEN), 2002).
    54.V.Kh. Mann, A.Y. Krokhin, I.A. Matveeva, G.I. Raab, M.Y. Murashkin, and R. Valiev, Light Met. Age 72, 26 (2014).
    55.J.M. Cubero-Sesin, H. In, M. Arita, H. Iwaoka, and Z. Horita, J. Mater. Sci. 49, 6550 (2014).CrossRef
    56.R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova, Adv. Eng. Mater. 10, B15 (2008).CrossRef
    57.J.W. Park, Y.J. Kim, C.H. Park, D.H. Lee, Y.G. Ko, J.H. Jang, and C.S. Lee, Acta Biomater. 5, 3272 (2009).CrossRef
    58.T.C. Lowe and R.Z. Valiev, Advanced Biomaterials and Biodevices, ed. A. Tiwari and A.N. Nordin (Wiley-Scrivener: Beverly, 2014), pp. 1–52.
    59.R.B. Figueiredo, E.R.D. Barbosa, X.C. Zhao, X.R. Yang, X.Y. Liu, P.R. Cetlin, and T.G. Langdon, Mater. Sci. Eng. A 619, 312 (2014).CrossRef
    60.A. Medvedev, H.P. Ng, R. Lapovok, Y. Estrin, T.C. Lowe, and V.N. Anumalasetty, Mater. Lett. 145, 308 (2015).CrossRef
    61.A.V. Polyakov, L. Dluhos, G.S. Dyakonov, G.I. Raab, and R. Valiev, Adv. Eng. Mater. 17, 1869 (2015).CrossRef
    62.Y. Estrin, C. Kasper, S. Diederichs, and R. Lapovok, J. Biomed. Nat. Res. A 90A, 1239 (2008).
    63.Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, and R. Boyd, Acta Biomater. 7, 900 (2011).CrossRef
    64.L. Le Guehennec, A. Soueidan, P. Layrolle, and Y. Amouriq, Dent. Mater. 23, 844 (2007).CrossRef
    65.H. Kim, S.H. Choi, J.J. Ryu, S.Y. Koh, J.H. Park, and I.S. Lee, Biomed. Mater. 3, 025011 (2008).CrossRef
    66.Y. Estrin, H.E. Kim, R. Lapovok, H.P. Ng, and J.H. Jo, Biomed. Res. Int. 914764 (2013).
    67.M. Niinomi, J. Mech. Behav. Biomed. Mater. 1, 30 (2008).CrossRef
    68.A. Panigrahi, M. Bönisch, T. Waitz, E. Schafler, M. Calin, J. Eckert, W. Skrotzki, and M. Zehetbauer, J. Alloys Compd. 628, 434 (2015).CrossRef
    69.J. Hofstetter, M. Becker, E. Martinelli, A.M. Weinberg, B. Mingler, H. Kilian, S. Pogatscher, P.J. Uggowitzer, and J.F. Loeffler, JOM 66, 566 (2014).CrossRef
    70.J. Hofstetter, E. Martinelli, A.M. Weinberg, M. Becker, B. Mingler, P.J. Uggowitzer, and J.F. Loeffler, Corros. Sci. 91, 29 (2015).CrossRef
    71.O. Kulyasova, R. Islamgaliev, Y.H. Zhao, and R. Valiev, 6th International Conference on Nanomaterials by Severe Plastic Deformation (NANOSPD6), ed. B. Beausir, N. Kasprzak, and L.S. Toth (Metz: University Press of Lorrain University, 2014).
    72.J. Horky, A. Ghaffar, A. Grill, St. Pogatscher, B. Mingler, P.J. Uggowitzer, and M. Zehetbauer. Paper presented at the 6th international conference on nanomaterials by severe plastic deformation (NANOSPD6), Metz, 2014.
    73.S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, and T. Al-Samman, J. Mater. Sci. 50, 3041 (2015).
    74. Y. Estrin, S.S. Nene, B.P. Kashyap, N. Prabhu, and T. Al-Samman, to be published (2016).
    75.G. Rogl, P. Rogl, E. Bauer, and M. Zehetbauer, Thermoelectric Nanomaterials, ed. K. Koumoto and T. Mori (Berlin: Springer, 2013), pp. 193.CrossRef
    76.M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita, M. Kai, and Z. Horita, J. Phys. Chem. Solids 70, 1089 (2009).CrossRef
    77.T. Hayashi, Y. Horio, and H. Takizawa, Metall. Mater. Trans. 51, 1914 (2010).
    78.L. Zhang, A. Grytsiv, B. Bonarski, M. Kerber, D. Setman, E. Schafler, P. Rogl, E. Bauer, G. Hilscher, and M. Zehetbauer, J. Alloys Compd. 494, 78 (2010).CrossRef
    79.G. Rogl, A. Grytsiv, P. Rogl, E. Royanian, E. Bauer, J. Horky, D. Setman, E. Schafler, and M. Zehetbauer, Acta Mater. 61, 6778 (2013).CrossRef
    80.G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer, and O. Eibl, Acta Mater. 63, 30 (2014).CrossRef
    81.G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauer, and P. Rogl, Acta Mater. 91, 229 (2015).CrossRef
    82.G. Rogl, A. Grytsiv, J. Bursik, J. Horky, R. Anbalagan, E. Bauer, R.C. Mallik, P. Rogl, and M. Zehetbauer, Phys. Chem. Chem. Phys. 17, 3715 (2015).CrossRef
    83.M.D. Croitoru, A.A. Shanenko, and F.M. Peeters, Phys. Rev. B 76, 024511 (2007).CrossRef
    84.H. Suematsu, M. Kato, and T. Ishida, in 25th International Conference on Low Temperature Physics (LT25), PT 5a 150(5a) (2009), p. 052250.
    85.V.A. Schweigert, F.M. Peeters, and P.S. Deo, Phys. Rev. Lett. 81, 2783 (1998).CrossRef
    86.S. Lee and Z. Horita, Metall. Mater. Trans. 53, 38 (2012).
    87.K. Edalati, T. Daio, S. Lee, Z. Horita, T. Nishizaki, T. Akune, T. Nojima, and T. Sasaki, Acta Mater. 80, 149 (2014).CrossRef
    88.C.P. Poole, H.A. Farach, R.J. Creswick, and R. Prozorov, Superconductivity, 2nd ed. (Amsterdam: Elsevier, 2007).
    89.T. Nishizaki, S. Lee, Z. Horita, T. Sasaki, and N. Kobayashi, Phys. C 493, 132 (2013).CrossRef
    90.L. Schlapbach and A. Zuttel, Nature 414, 353 (2001).CrossRef
    91.V.M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok, Acta Mater. 52, 405 (2004).CrossRef
    92.M. Krystian, M.J. Zehetbauer, H. Kropik, B. Mingler, and G. Krexner, J. Alloys Compd. 509S, 449 (2011).CrossRef
    93.D. Fruchart, Metals 2, 329 (2012).CrossRef
    94.D. Fruchart, Hydrogen Storage (Hoboken: Wiley, 2013).CrossRef
    95.A. Grill, J. Horky, G. Krexner, and M. Zehetbauer, Int. J. Hydrog. Energy 40, 17144 (2015).CrossRef
    96.T. Hongo, K. Edalati, M. Arita, J. Matsuda, E. Akiba, and Z. Horita, Acta Mater. 92, 46 (2015).CrossRef
    97.K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, and Z. Horita, Int. J. Hydrog. Energy 38, 4622 (2013).CrossRef
    98.K. Edalati, J. Matsuda, M. Arita, T. Daio, E. Akiba, and Z. Horita, Appl. Phys. Lett. 103, 143902 (2013).CrossRef
    99.Y. Ikoma, K. Hayano, K. Edalati, K. Saito, Q.X. Guo, Z. Horita, T. Aoki, and D.J. Smith, J. Mater. Sci. 49, 6565 (2014).CrossRef
    100.R.K. Islamgaliev, R. Kuzel, E.D. Obraztsova, J. Burianek, F. Chmelik, and R.Z. Valiev, Mater. Sci. Eng. A 249, 152 (1998).CrossRef
    101.Y. Ikoma, Y. Ejiri, K. Hayano, K. Saito, Q.X. Guo, and Z. Horita, Philos. Mag. Lett. 94, 1 (2014).CrossRef
    102.Y. Ikoma, T. Toyota, Y. Ejiri, K. Saito, Q.X. Guo, and Z. Horita, J. Mater. Sci. 51, 138 (2016).CrossRef
  • 作者单位:Ruslan Z. Valiev (1) (2)
    Yuri Estrin (3) (4)
    Zenji Horita (5) (6)
    Terence G. Langdon (7) (8)
    Michael J. Zehetbauer (9)
    Yuntian Zhu (10) (11)

    1. Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx str., Ufa, 450000, Russia
    2. Laboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, 28 Universitetsky prospekt, Peterhof, Saint Petersburg, 198504, Russia
    3. Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
    4. Laboratory of Hybrid Nanostructured Materials, NUST MISIS, Moscow, 119490, Russia
    5. Department of Materials Science and Engineering, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
    6. WPI, International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
    7. Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089-1453, USA
    8. Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BH, UK
    9. Research Group Physics of Nanostructured Materials, Faculty of Physics, University of Vienna, Vienna, Austria
    10. Departments of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
    11. School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Nanotechnology
    Crystallography
  • 出版者:Springer Boston
  • ISSN:1543-1851
文摘
It is now well established that the processing of bulk solids through the application of severe plastic deformation (SPD) leads to exceptional grain refinement to the submicrometer or nanometer level. Extensive research over the last decade has demonstrated that SPD processing also produces unusual phase transformations and leads to the introduction of a range of nanostructural features, including nonequilibrium grain boundaries, deformation twins, dislocation substructures, vacancy agglomerates, and solute segregation and clustering. These many structural changes provide new opportunities for fine tuning the characteristics of SPD metals to attain major improvements in their physical, mechanical, chemical, and functional properties. This review provides a summary of some of these recent developments. Special emphasis is placed on the use of SPD processing in achieving increased electrical conductivity, superconductivity, and thermoelectricity, an improved hydrogen storage capability, materials for use in biomedical applications, and the fabrication of high-strength metal-matrix nanocomposites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700