Numerical investigation of the influence of heat source modeling on simulated residual stress distribution in weaving welds
详细信息    查看全文
  • 作者:Yoshiki Mikami ; Terumi Nakamura ; Masahito Mochizuki
  • 关键词:Weaving ; Finite element analysis ; Residual stresses ; Temperature distribution ; Repair
  • 刊名:Welding in the World
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:60
  • 期:1
  • 页码:41-49
  • 全文大小:2,660 KB
  • 参考文献:1.Wallin J, Leander J, Karoumi R (2011) Strengthening of a steel railway bridge and its impact on the dynamic response to passing trains. Eng Struct 33:635–646. doi:10.​1016/​j.​engstruct.​2010.​11.​022 CrossRef
    2.Lin W, Yoda T, Taniguchi N et al (2014) Preventive maintenance on welded connection joints in aged steel railway bridges. J Constr Steel Res 92:46–54. doi:10.​1016/​j.​jcsr.​2013.​10.​012 CrossRef
    3.Dexter RJ, Ocel JM (2013) Manual for repair and retrofit of fatigue cracks in steel bridges. Report No. FHWA-IF-13-020. Federal Highway Administration, US Department of Transportation, Washington, pp 19–38
    4.Smith MC, Smith AC, Wimpory R, Ohms C (2014) A review of the NeT Task Group 1 residual stress measurement and analysis round robin on a single weld bead-on-plate specimen. Int J Press Vessel Pip 120–121:93–140. doi:10.​1016/​j.​ijpvp.​2014.​05.​002 CrossRef
    5.Benson M, Rudland D, Csontos A (2014) Weld residual stress finite element analysis validation: part 1—data development effort. 1–187. NUREG-2162, United States Nuclear Regulatory Commission, USA
    6.Dong P, Hong JK (2013) Analysis of IIW X/XV RSDP phase I round-robin residual stress results. Weld World 46:24–31. doi:10.​1007/​BF03263380 CrossRef
    7.Wohlfahrt H, Nitschkepagel T, Dilger K et al (2013) Residual stress calculations and measurements—review and assessment of the IIW round robin results. Weld World 56:120–140. doi:10.​1007/​BF03321387 CrossRef
    8.Bouchard PJ (2009) The NeT bead-on-plate benchmark for weld residual stress simulation. Int J Press Vessel Pip 86:31–42. doi:10.​1016/​j.​ijpvp.​2008.​11.​019 CrossRef
    9.Smith MC, Smith AC (2009) NeT bead-on-plate round robin: comparison of transient thermal predictions and measurements. Int J Press Vessel Pip 86:96–109. doi:10.​1016/​j.​ijpvp.​2008.​11.​016 CrossRef
    10.Muransky O, Benedict PJ, Smith MC, Kirstein O, Edwards L and Holden TM (2010) Analysis of residual stresses in three-pass slot weld (NeT TG4): finite element modelling and neutron diffraction, Proceedings of the ASME 2010 Pressure Vessels and Piping Division Conference 1299–1305. doi: 10.​1115/​PVP2010-25290
    11.Smith MC, Smith AC (2009) NeT bead-on-plate round robin: comparison of residual stress predictions and measurements. Int J Press Vessel Pip 86:79–95. doi:10.​1016/​j.​ijpvp.​2008.​11.​017 CrossRef
    12.Smith MC, Nadri B, Smith AC, Carr DG, Bendeich PJ, Edwards LE (2009) Optimisation of mixed hardening material constitutive models for weld residual stress simulation using the NeT Task Group 1 single bead on plate benchmark problem. Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference 303–318. doi: 10.​1115/​PVP2009-77158
    13.Bendeich PJ, Smith MC, Carr DG, Edwards L Sensitivity of predicted weld residual stresses in the NeT Task Group 1 single bead on plate benchmark problem to finite element mesh design and heat source characteristics. Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference 501–507. doi: 10.​1115/​PVP2009-77584
    14.Hu JF, Yang JG, Fang HY et al (2006) Numerical simulation on temperature and stress fields of welding with weaving. Sci Technol Weld Join 11:358–365. doi:10.​1179/​174329306X124189​ CrossRef
    15.Wang S, Goldak J, Zhou J et al (2009) Simulation on the thermal cycle of a welding process by space–time convection–diffusion finite element analysis. Int J Therm Sci 48:936–947. doi:10.​1016/​j.​ijthermalsci.​2008.​07.​007 CrossRef
    16.Muránsky O, Smith MC, Bendeich PJ et al (2012) Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements. Int J Solids Struct 49:1045–1062. doi:10.​1016/​j.​ijsolstr.​2011.​07.​006 CrossRef
    17.Winczek J (2012) Modelling of heat affected zone in cylindrical steel elements surfaced by welding. Appl Math Model 36:1514–1528. doi:10.​1016/​j.​apm.​2011.​09.​032 CrossRef
    18.Chen Y, He Y, Chen H et al (2014) Effect of weave frequency and amplitude on temperature field in weaving welding process. Int J Adv Manuf Technol 75:803–813. doi:10.​1007/​s00170-014-6157-0 CrossRef
    19.Stevens MJ, Dennis RJ, Bottomley IJM, Bradford RAW (2013) Modelling the manufacturing history, through life creep-fatigue damage and limiting defect sizes of a pipework joint using finite element based methods. Int J Press Vessel Pip 108–109:13–27. doi:10.​1016/​j.​ijpvp.​2013.​04.​003 CrossRef
    20.Goldak J, Chakravarti A, Bibby M (1984) A new finite-element model for welding heat-sources. Metall Trans B 15:299–305. doi:10.​1007/​BF02667333 CrossRef
    21.Nakamura T, Hiraoka K, Zenitani S (2008) Improvement of MIG welding stability in pure Ar shielding gas using small amount of oxygen and coaxial hybrid solid wire. Sci Technol Weld Join 13:25–32. doi:10.​1179/​174329307X249289​ CrossRef
    22.Nakamura T, Hiraoka K (2011) Effect of coaxial welding wire structure on arc instability in argon shielding gas. Sci Technol Weld Join 16:717–721. doi:10.​1179/​1362171811Y.​0000000068 CrossRef
  • 作者单位:Yoshiki Mikami (1)
    Terumi Nakamura (2)
    Masahito Mochizuki (1)

    1. Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
    2. Materials Manufacturing and Engineering Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
  • 刊物主题:Metallic Materials; Continuum Mechanics and Mechanics of Materials; Theoretical and Applied Mechanics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1878-6669
文摘
The influence of the modeling of the weaving of a heat source on the simulated residual stress distribution was examined. Two types of heat source models, “weaving” and “quasi-weaving,” were used. The former modeled the weaving directly, and the latter simplified the weaving heat source to a wide and straight-moving one. When the weaving heat source was used, fluctuating temperature histories, wave-like fusion lines, and serrated residual stress distributions were obtained. Three different quasi-weaving heat source models have different combinations of the heat flux value per unit volume and the elements to which the heat source was introduced. The temperature distributions around the welds were different depending on quasi-weaving models used. However, when the temperature distributions of the weaving welds could be reproduced precisely by a quasi-weaving model, smoothed temperature histories and residual stress distributions were simulated, and the values obtained were comparable to those obtained with the weaving model. On the other hand, when the temperature distribution was not well reproduced, the residual stress distribution did not agree with that of the weaving model. The results suggest that the modeling of a weaving heat source using a quasi-weaving model requires adjustment of the temperature distribution. Keywords (IIW Thesaurus) Weaving Finite element analysis Residual stresses Temperature distribution Repair

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700