Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes
详细信息    查看全文
  • 作者:F. Markoulidis (1)
    C. Lei (1)
    C. Lekakou (1)
  • 刊名:Applied Physics A: Materials Science & Processing
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:111
  • 期:1
  • 页码:227-236
  • 全文大小:1025KB
  • 参考文献:1. B.E. Conway, / Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, Berlin, 1999)
    2. J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angew. Chem., Int. Ed. 47, 520 (2008) CrossRef
    3. C. Lei, P. Wilson, C. Lekakou, “Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. J. Power Sources 196(18), 7823 (2011) CrossRef
    4. A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim. Acta 55, 7501 (2010) CrossRef
    5. G. Wanga, Y. Linga, F. Qiana, X. Yanga, X.-X. Liub, Y. Li, Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. J. Power Sources 196, 5209 (2011) CrossRef
    6. M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterisation for supercapacitor application. Int. J. Electrochem. Sci. 3, 96 (2008)
    7. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1 (2011) CrossRef
    8. P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31 (2004) CrossRef
    9. M. Meyyapan (ed.), / Carbon Nanotubes, Science and Applications (CRC Press, Boca Raton, 2004)
    10. B. Zhang, J. Liang, C.L. Xu, B.Q. Wei, D.B. Ruan, D.H. Wu, Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte. Mater. Sci. Lett. 51, 539 (2001) CrossRef
    11. J.H. Kim, K.-W. Nam, S.B. Ma, K.B. Kim, Fabrication and electrochemical properties of carbon nanotube electrodes. Carbon 44, 1963 (2006) CrossRef
    12. A. Burke, M. Arulepp, Recent developments in carbon-based electrochemical capacitors: atatus of the technology and future prospects. Electrochem. Soc. Proc. 576 (2001), 2001 meeting
    13. Y. Chen, C. Liu, F. Li, H.-M. Cheng, Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 13, 141 (2006) CrossRef
    14. A. Peigney, Ch. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507 (2001) CrossRef
    15. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003) CrossRef
    16. N. Muraeu, E. Mendoza, S.R.P. Silva, In situ and real time determination of metallic and semi-conducting single-walled carbon nanotubes in suspension via dielectrophoresis. Appl. Phys. Lett. 88, 2431109 (2006)
    17. C. Niu, E. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997) CrossRef
    18. E. Frackowiak, K. Metenenier, V. Bertangna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421 (2000) CrossRef
    19. C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of double-layer (EDLC) capacitors electrodes based on carbon nanotubes and activated carbon materials. J. Power Sources 124, 321 (2003) CrossRef
    20. C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J.F. Watts, G.T. Reed, Carbon-based fibrous EDLC capacitors and supercapacitors. J. Nanotechnol. 2011, (2011). doi:10.115/2011/409382
    21. H. Zhang, G. Gao, Y. Yang, Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources 172, 476 (2007) CrossRef
    22. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104(34), 13574 (2007) CrossRef
    23. C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314 (2006) CrossRef
    24. A.K. Murugesh, A. Uthayanan, C. Lekakou, Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl. Phys. A 100(1), 135 (2010) CrossRef
    25. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877 (2005) CrossRef
    26. R. Perez, / Electronic Display Devices (TPR, Blue Ridge Summit, 1988)
    27. B. Bahadur, / Liquid Crystals, Applications and Uses, vol.?1 (World Scientific, Singapore, 1990)
    28. M. Slater, / Microprocessor-Based Design (Prentice Hall, New York, 1989)
    29. N. Patil, A. Lin, E.R. Myers, K. Ryu, A. Badmaev, C. Zhou, H.-S.P. Wong, S. Mitra, Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 8(4), 498 (2009) CrossRef
  • 作者单位:F. Markoulidis (1)
    C. Lei (1)
    C. Lekakou (1)

    1. Centre of Materials, Surfaces and Structural Systems, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
  • ISSN:1432-0630
文摘
High-performance supercapacitors with organic electrolyte 1?M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16-0 times lower specific capacitance and 5-0 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700