Microbial Transformation of Curcumin to Its Derivatives with a Novel Pichia kudriavzevii ZJPH0802 Strain
详细信息    查看全文
  • 作者:Weiyu Zhang (1)
    Jin Huang (1)
    Xingde Wo (2)
    Pu Wang (1)
  • 关键词:Curcumin ; Pichia kudriavzevii ; Biotransformation ; Hexahydrocumin ; Tetrahydrocurcumin
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:170
  • 期:5
  • 页码:1026-1037
  • 全文大小:440KB
  • 参考文献:1. Lin, J. K., Pan, M. H., & Lin Shiau, S. Y. (2000). Recent studies on the biofunctions and biotransformations of curcumin. / BioFactors, 13, 153-58. CrossRef
    2. Kaminaga, Y., Nagatsu, A., Akiyama, T., Sugimoto, N., Yamazaki, T., Maitani, T., et al. (2003). Production of unnatural glucosides of curcumin with drastically enhanced water solubility by cell suspension cultures of / Catharanthus roseus. / FEBS Letters, 555, 311-16. CrossRef
    3. Maehara, S., Ikeda, M., Haraguchi, H., Kitamura, C., Nagoe, T., Ohashi, K., et al. (2011). Microbial conversion of curcumin into colorless hydroderivatives by the endophytic fungus / Diaporthe sp. associated with / Curcuma longa. / Chemical & Pharmaceutical Bulletin, 59, 1042-044. CrossRef
    4. Ratanajiajaroen, P., Watthanaphanit, A., Tamura, H., Tokura, S., & Rujiravanit, R. (2012). Release characteristic and stability of curcumin incorporated in β-chitin non-woven fibrous sheet using Tween 20 as an emulsifier. / European Polymer Journal, 48, 512-23. CrossRef
    5. Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. / Molecular Pharmaceutics, 4, 807-18. CrossRef
    6. Niu, Y. M., Wang, X. Y., Chai, S. H., Chen, Z. Y., An, X. Q., & Shen, W. G. (2012). Effects of curcumin concentration and temperature on the spectroscopic properties of liposomal curcumin. / Journal of Agricultural and Food Chemistry, 60, 1865-870. CrossRef
    7. Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., et al. (2008). Biological activities of curcumin and its analogues (congeners) made by man and mother nature. / Biochemical Pharmacology, 76, 1590-611. CrossRef
    8. Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., et al. (2009). Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. / Bioorganic & Medicinal Chemistry, 17, 2623-631. CrossRef
    9. Bajpai, V. K., Kang, S. C., Heu, S., Shukla, S., Lee, S., & Beak, K. H. (2010). Microbial conversion and anticandidal effects of bioconverted product of cabbage ( / Brassica oleracea) by / Pectobacterium carotovorum pv. / carotovorum 21. / Food and Chemical Toxicology, 48, 2719-724. CrossRef
    10. Faramarzi, M. A., Zolfaghary, N., Yazdi, M. T., Adrangi, S., Rastegar, H., Amini, M., et al. (2009). Microbial conversion of androst-1,4-dine-3,17-dione by / Mucor racemosus to hydroxysteroid-1,4-dien-3-one derivatives. / Journal of Chemical Technology and Biotechnology, 84, 1021-025. CrossRef
    11. Zhang, X., Ye, M., Li, R., Yin, J., & Guo, D. A. (2010). Microbial transformation of curcumin by / Rhizopus chinensis. / Biocatalysis and Biotransformation, 28, 380-86. CrossRef
    12. Bharti, Nagpure, A. A. L., & Gupta, R. K. (2011). Biotransformation of curcumin to vanillin. / Indian Journal of Chemistry, 50B, 1119-122.
    13. Herath, W., Ferreira, D., & Khan, I. A. (2007). Microbial metabolism. Part 7: curcumin. / Natural Product Research, 21, 444-50. CrossRef
    14. Pan, M. H., Huang, T. M., & Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. / Drug Metabolism and Disposition, 27, 486-94.
    15. Pfeiffer, E., Hoehle, S. I., Walch, S. G., Riess, A., Solyom, A. M., & Metzler, M. (2007). Curcuminoids from reactive glucuronides in vitro. / Journal of Agricultural and Food Chemistry, 55, 538-44. CrossRef
    16. Somparn, P., Phisalaphong, C., Nakornchai, S., Unchern, S., & Morales, N. P. (2007). Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. / Biological & Pharmaceutical Bulletin, 30, 74-8. CrossRef
    17. Sugiyama, Y., Kawakishi, S., & Osawa, T. (1996). Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. / Biochemical Pharmacology, 52, 519-25. CrossRef
    18. Murugan, P., & Pari, L. (2006). Antioxidant effect of tetrahydrocurcumin in streptozotocin-nicotinamide induced diabetic rats. / Life Sciences, 79, 1720-728. CrossRef
    19. Gong, J. S., Lu, Z. M., Shi, J. S., Dou, W. F., Xu, H. Y., Zhou, Z. M., et al. (2011). Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus / —Fusarium oxysporum H3. / Applied Biochemistry and Biotechnology, 165, 963-77. CrossRef
    20. Pires, M. N., & Seldin, L. (1997). Evaluation of Biolog system for identification of strain of / Paenibacillus azotofixans. / Antonie Van Leeuwenhoek, 71, 195-00. CrossRef
    21. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. / Nucleic Acids Research, 22, 4673-680. CrossRef
    22. Kumar, S., Nei, M., Dudley, J., & Tamura, K. (2008). MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. / Briefings in Bioinformatics, 9, 299-06. CrossRef
    23. Jiang, H. L., Timmermann, B. N., & Gang, D. R. (2006). Use of liquid chromatography-electrospray ionization tandem mass spectrometry to identify diarylheptanoids in turmeric ( / Curcuma longa L.) rhizome. / Journal of Chromatography A, 1111, 21-1. CrossRef
    24. Jiang, H. L., Somogyi, A., Jacobsen, N. E., Timmermann, B. N., & Gang, D. R. (2006). Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. / Rapid Communications in Mass Spectrometry, 20, 1001-012. CrossRef
  • 作者单位:Weiyu Zhang (1)
    Jin Huang (1)
    Xingde Wo (2)
    Pu Wang (1)

    1. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
    2. College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
文摘
Curcumin, a polyphenolic compound, has shown a wide range of pharmacological activities and has been widely used as a food additive. However, the clinical use of curcumin is limited to some extent because of its poor water solubility and low bioavailability. To overcome these problems, many approaches have been attempted and structural modification of curcumin by microbial transformation has been proven to be an alternative. In this study, we isolated a novel yeast strain Pichia kudriavzevii ZJPH0802 from a soil sample, which is capable of converting curcumin to its derivatives. The transformed products by this strain were evaluated by HPLC, (+) electrospray ionization (ESI)-MSn, and 1H nuclear magnetic resonance methods. Compared with controls, two new peaks of the transformed broth appeared at retention times of 26?min (I) and 62?min (II) by HPLC analysis. The two transformed products were then further identified by (+) ESI-MSn. The spectrum showed that compound I had an accurate [M+H+NH3]+ ion at m/z 392, [M+H]+ ion at m/z 375, [M+H–H2O]+ ion at m/z 357, and (+) ESI-MS3 spectrum showed that ion at m/z 357 could further form fragment ions at m/z 339, 177, and 163; compound II had an accurate [M+H]+ ion at m/z 373, [M+H–H2O]+ ion at m/z 355, and (+) ESI-MS3 spectrum showed that ion at m/z 355 could further form fragment ions at m/z 219, 179, 177, 163, and 137. These two transformed products thereby were confirmed as hexahydrocurcumin (I) and tetrahydrocurcumin (II).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700