Direct visual detection of MnO2 nanosheets within seconds
详细信息    查看全文
  • 作者:Yi He ; Zeru Wang ; Dengying Long
  • 关键词:Visual detection ; MnO2 nanosheets ; Single layer ; Redox ; 3 ; 3′ ; 5 ; 5′-Tetramethylbenzidine
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:408
  • 期:4
  • 页码:1231-1236
  • 全文大小:966 KB
  • 参考文献:1.Rocca D, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44:957–68.CrossRef
    2.Jariwala D, Sangwan V, Lauhon L, Marks T, Hersam. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42:2824–60.CrossRef
    3.Wang B, Wu H, Yu L, Xu R, Lim T. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv Mater. 2012;24:1111–6.CrossRef
    4.Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114:6130–78.CrossRef
    5.Yao L, Xu S. Detection of magnetic nanomaterials in molecular imaging and diagnosis applications. Nanotechnol Rev. 2014;3:247–68.
    6.Zeng S, Baillargeat D, Ho H, Yong K. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43:3426–52.CrossRef
    7.Zhou Z, Tian N, Li J, Broadwell I, Sun S. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev. 2011;40:4167–85.CrossRef
    8.Sharifi S, Behzadi S, Laurent S, Forrest M, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41:2323–43.CrossRef
    9.Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem. 2014;86:8142–8.CrossRef
    10.Hartmann G, Baumgartner T, Schuster M. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag+. Anal Chem. 2013;86:790–6.CrossRef
    11.Bouri M, Salghi R, Algarra M, Zougagh M, Ríos A. A novel approach to size separation of gold nanoparticles by capillary electrophoresis-evaporative light scattering detection. RSC Adv. 2015;5:16672–7.CrossRef
    12.Tsogas G, Giokas D, Vlessidis A. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal Chem. 2014;86:3484–92.CrossRef
    13.Hartmann G, Hutterer C, Schuster M. Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. J Anal Atom Spectrom. 2013;28:567–72.CrossRef
    14.Hadioui M, Merdzan V, Wilkinson K. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environ Sci Technol. 2015;49:6141–8.CrossRef
    15.Teo W, Ambrosi A, Pumera M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun. 2013;28:51–3.CrossRef
    16.Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y. Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc. 2008;130:15938–43.CrossRef
    17.Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater. 2014;26:7019–26.CrossRef
    18.Deng R, Xie X, Vendrell M, Chang Y, Liu X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133:20168–71.CrossRef
    19.Li N, Diao W, Han Y, Pan W, Zhang T, Tang B. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem Eur J. 2014;20:16488–91.CrossRef
    20.Park S, Shim H, Lee C, Song H, Park I, Kim J. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015;8:990–1004.CrossRef
    21.Yang K, Zeng M, Hu X, Guo B, Zhou J. Layered MnO2 nanosheet as a label-free nanoplatform for rapid detection of mercury (II). Analyst. 2014;139:4445–8.CrossRef
    22.Zhai W, Wang C, Yu P, Wang Y, Mao L. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem. 2014;86:12206–13.CrossRef
    23.Zhang X, Zheng C, Guo S, Li J, Yang H, Chen G. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem. 2014;86:3426–34.CrossRef
    24.Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc. 2014;136:11220–3.CrossRef
    25.He D, He X, Wang K, Yang X, Yang X, Li X. Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun. 2014;50:11049–52.CrossRef
    26.Sinha A, Pradhan M, Pal T. Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. J Phys Chem C. 2013;117:23976–86.CrossRef
    27.He Y, Huang W, Liang Y, Yu H. A low-cost and label-free assay for hydrazine using MnO2 nanosheets as colorimetric probes. Sensor Actuat B. 2015;220:927–31.CrossRef
    28.Yuan Y, Wu S, Shu F, Liu Z. An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun. 2014;50:1095–7.CrossRef
    29.Liu Z, Xu K, Sun H, Yin S. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small. 2015;11:2182–91.CrossRef
    30.Josephy P, Eling T, Mason R. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257:3669–75.
    31.Chen X, Su B, Cai Z, Chen X, Oyama M. PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sensor Actuat B. 2014;201:286–92.CrossRef
    32.Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T. Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B. 2014;2:6097–105.CrossRef
    33.Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–8.CrossRef
  • 作者单位:Yi He (1)
    Zeru Wang (1)
    Dengying Long (1)

    1. School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
文摘
The increasing application of nanomaterials will inevitably lead to their release into the environment, which may pose a threat to the environment and human health. As such, there is an urgent need to detect various nanomaterials. In the present work, we present a novel, rapid, and simple visual detection of MnO2 nanosheets in buffer solution and environmental water sample. In this assay, a redox reaction between MnO2 nanosheets and 3,3′,5,5′-tetramethylbenzidine (TMB) occurred, leading to the oxidation of TMB to TMB diimine. This redox reaction generated different colors dependent on the concentration of MnO2 nanosheets, including colorless, blue, green, and yellow, which allowed semiquantitative detection of MnO2 nanosheets with the naked eye. The detection range of the visual assay was 2–15 μg/mL, and the minimum concentration of MnO2 nanosheets can be visually detected at concentrations down to 2.0 μg/mL. Moreover, the developed visual assay showed a high selectivity to MnO2 nanosheets over Mn2+ ions, tetramethylammonium hydroxide, hydrogen peroxide, graphene oxide, and graphitic carbon nitride nanosheets.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700