Co-modification of class B genes TfDEF and TfGLO in Torenia fournieri Lind. alters both flower morphology and inflorescence architecture
详细信息    查看全文
  • 作者:Katsutomo Sasaki (1)
    Hiroyasu Yamaguchi (1)
    Masayoshi Nakayama (1)
    Ryutaro Aida (1)
    Norihiro Ohtsubo (1)
  • 关键词:Anthocyanin ; Class B gene ; MADS ; TfDEF ; TfGLO ; Torenia
  • 刊名:Plant Molecular Biology
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:86
  • 期:3
  • 页码:319-334
  • 全文大小:7,950 KB
  • 参考文献:1. Aida R (2008) / Torenia fournieri (torenia) as a model plant for transgenic studies. Plant Biotechnol 25:541鈥?45 CrossRef
    2. Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the / silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569鈥?79 CrossRef
    3. Bey M, St眉ber K, Fellenberg K, Schwarz-Sommer Z, Sommer H, Saedler H, Zachgo S (2004) Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene / DEFICIENS. Plant Cell 16:3197鈥?215 CrossRef
    4. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in / Arabidopsis. Plant Cell 1:37鈥?2 CrossRef
    5. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of / Arabidopsis. Development 112:1鈥?0
    6. Broholm SK, P枚ll盲nen E, Ruokolainen S, T盲htiharju S, Kotilainen M, Albert VA, Elomaa P, Teeri TH (2010) Functional characterization of B class MADS-box transcription factors in / Gerbera hybridada. J Exp Bot 61:75鈥?5 CrossRef
    7. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31鈥?7 CrossRef
    8. Davies B, Motte P, Keck E, Saedler H, Sommer H, Schwarz-Sommer Z (1999) / PLENA and / FARINELLI: redundancy and regulatory interactions between two / Antirrhinum MADS-box factors controlling flower development. EMBO J 18:4023鈥?034 CrossRef
    9. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The / SEP4 gene of / Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935鈥?940 CrossRef
    10. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins / SQUAMOSA, / DEFICIENS and GLOBOSA is involved in the control of floral architecture in / Antirrhinum majus. EMBO J 18:5370鈥?379 CrossRef
    11. Feng X, Zhao Z, Tian Z, Xu S, Luo Y, Cai Z, Wang Y, Yang J, Wang Z, Weng L, Chen J, Zheng L, Guo X, Luo J, Sato S, Tabata S, Ma W, Cao X, Hu X, Sun C, Luo D (2006) Control of petal shape and floral zygomorphy in / Lotus japonicus. Proc Natl Acad Sci USA 103:4970鈥?975 CrossRef
    12. Galego L, Almeida J (2002) Role of / DIVARICATA in the control of dorsoventral asymmetry in / Antirrhinum flowers. Genes Dev 16:880鈥?91 CrossRef
    13. Gallie DR, Feder JN, Schimke RT, Walbot V (1991) Post-transcriptional regulation in higher eukaryotes: the role of the reporter gene in controlling expression. Mol Gen Genet 228:258鈥?64 CrossRef
    14. Goto K, Meyerowitz EM (1994) Function and regulation of the / Arabidopsis floral homeotic gene / PISTILLATA. Genes Dev 8:1548鈥?560 CrossRef
    15. Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in / Arabidopsis. Plant J 34:733鈥?39 CrossRef
    16. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525鈥?29 CrossRef
    17. Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene / APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703鈥?16 CrossRef
    18. Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identityin rice and / Arabidopsis. J Exp Bot 57:3433鈥?444 CrossRef
    19. Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H et al (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724鈥?44 CrossRef
    20. Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature 399:144鈥?48 CrossRef
    21. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the / APETALA3 and / PISTILLATA MADS-box gene lineages. Genetics 149:765鈥?83
    22. Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot / Aquilegia. Plant Cell 19:750鈥?66 CrossRef
    23. Krizek BA, Meyerowitz EM (1996) The / Arabidopsis homeotic genes / APETALA3 and / PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11鈥?2
    24. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in / Antirrhinum. Nature 383:794鈥?99 CrossRef
    25. Luo D, Carpenter R, Copsey L, Vincent C, Clark J, Coen E (1999) Control of organ asymmetry in flowers of / Antirrhinum. Cell 99:367鈥?76 CrossRef
    26. Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8:745鈥?56 CrossRef
    27. Melzer R, Theissen G (2009) Reconstitution of 鈥榝loral quartets鈥?in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 37:2723鈥?736 CrossRef
    28. Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50:1232鈥?248 CrossRef
    29. Mitsuda N, Matsui K, Ikeda M, Nakata M, Oshima Y, Nagatoshi Y, Ohme-Takagi M (2011a) CRES-T, an effective gene silencing system utilizing chimeric repressors. Methods Mol Biol 754:87鈥?05 CrossRef
    30. Mitsuda N, Takiguchi Y, Shikata M, Sage-Ono K, Ono M, Sasaki K, Yamaguchi H, Narumi T, Tanaka Y, Sugiyama M, Yamamura T, Terakawa T, Gion K, Suzuri R, Tanaka Y, Nakatsuka T, Kimura S, Nishihara M, Sakai T, Endo-Onodera R, Saitoh K, Isuzugawa K, Oshima Y, Koyama T, Ikeda M, Narukawa M, Matsui K, Nakata M, Ohtsubo N, Ohme-Takagi M (2011b) The new FioreDB database provides comprehensive information on plant transcription factors and phenotypes induced by CRES-T in ornamental and model plants. Plant Biotechnol 28:123鈥?30 CrossRef
    31. Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign gene in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:39鈥?9 CrossRef
    32. Mondrag贸n-Palomino M, Hiese L, H盲rter A, Koch MA, Theissen G (2009) Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses. BMC Evol Biol 9:81. doi:10.1186/1471-2148-9-81 CrossRef
    33. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122鈥?28 CrossRef
    34. Narumi T, Aida R, Niki T, Nishijima T, Mitsuda N, Hiratsu K, Ohme-Takagi M, Ohtsubo N (2008) Chimeric / AGAMOUS repressor induces serrated petal phenotype in / Torenia fournieri similar to that induced by cytokinin application. Plant Biotechnol 25:45鈥?3 CrossRef
    35. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require / SEPALLATA MADS-box genes. Nature 405:200鈥?03 CrossRef
    36. Preston JC, Hileman LC (2009) Developmental genetics of floral symmetry evolution. Trends Plant Sci 14:147鈥?54 CrossRef
    37. Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079鈥?101
    38. Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of / Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA 93:4793鈥?798 CrossRef
    39. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105鈥?110 CrossRef
    40. Rijpkema AS, Royaert S, Zethof J, van der Weerden G, Gerats T, Vandenbussche M (2006) Analysis of the / Petunia TM6 MADS box gene reveals functional divergence within the / DEF/AP3 lineage. Plant Cell 18:1819鈥?832 CrossRef
    41. Rijpkema AS, Gerats T, Vandenbussche M (2007) Evolutionary complexity of MADS complexes. Curr Opin Plant Biol 10:32鈥?8 CrossRef
    42. Sablowski RW, Meyerowitz EM (1998) A homolog of / NO APICAL MERISTEM is an immediate target of the floral homeotic genes / APETALA3/PISTILLATA. Cell 92:93鈥?03 CrossRef
    43. Salemme M, Sica M, Gaudio L, Aceto S (2011) Expression pattern of two paralogs of the / PI/ / GLO-like locus during / Orchis italica (Orchidaceae, Orchidinae) flower development. Dev Genes Evol 221:241鈥?46 CrossRef
    44. Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N (2010) Functional divergence within class B MADS-box genes / TfGLO and / TfDEF in / Torenia fournieri Lind. Mol Genet Genomics 284:399鈥?14 CrossRef
    45. Shikata M, Ohme-Takagi M (2008) The utility of transcription factors for manipulation of floral traits. Plant Biotechnol 25:31鈥?6 CrossRef
    46. Shirasawa-Seo N, Sano Y, Nakamura S, Murakami T, Gotoh Y, Naito Y, Hsia CN, Seo S, Mitsuhara I, Kosugi S, Ohashi Y (2005) The promoter of Milk vetch dwarf virus component 8 confers effective gene expression in both dicot and monocot plants. Plant Cell Rep 24:155鈥?63 CrossRef
    47. Sleat DE, Gallie DR, Jefferson RA, Bevan MW, Turner PC, Wilson TMA (1987) Characterisation of the 5使-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 217:217鈥?25 CrossRef
    48. Smaczniak C, Immink RG, Mui帽o JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufmann K (2012) Characterization of MADS-domain transcription factor complexes in / Arabidopsis flower development. Proc Natl Acad Sci USA 109:1560鈥?565 CrossRef
    49. Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12:358鈥?67 CrossRef
    50. Sommer H, Beltr谩n JP, Huijser P, Pape H, L枚nnig WE, Saedler H, Schwarz-Sommer Z (1990) / Deficiens, a homeotic gene involved in the control of flower morphogenesis in / Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605鈥?13
    51. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75鈥?5 CrossRef
    52. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469鈥?71 CrossRef
    53. Tr枚bner W, Ramirez L, Motte P, Hue I, Huijser P, L枚nnig WE, Saedler H, Sommer H, Schwarz-Sommer Z (1992) / GLOBOSA: homeotic gene which interact with / DEFICIENS in the control of / Antirrhinum floralor ganogenesis. EMBO J 11:4693鈥?704
    54. Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in / Petunia hybrida flower development. Plant Cell 16:741鈥?54 CrossRef
    55. Wellmer F, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314鈥?326 CrossRef
    56. Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and / Arabidopsis. Development 131:6083鈥?091 CrossRef
    57. Wuest SE, O鈥橫aoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci USA 109:13452鈥?3457 CrossRef
    58. Yang X, Pang HB, Liu BL, Qiu ZJ, Gao Q, Wei L, Dong Y, Wang YZ (2012) Evolution of double positive autoregulatory feedback loops in CYCLOIDEA2 clade genes is associated with the origin of floral zygomorphy. Plant Cell 24:1834鈥?847 CrossRef
    59. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the / Arabidopsis homeotic gene / AGAMOUS resembles transcription factors. Nature 346:35鈥?9 CrossRef
    60. Zik M, Irish VF (2003) Global identification of target genes regulated by / APETALA3 and / PISTILLATA floral homeotic gene action. Plant Cell 15:207鈥?22 CrossRef
  • 作者单位:Katsutomo Sasaki (1)
    Hiroyasu Yamaguchi (1)
    Masayoshi Nakayama (1)
    Ryutaro Aida (1)
    Norihiro Ohtsubo (1)

    1. NARO Institute of Floricultural Science (NIFS), National Agriculture and Food Research Organization (NARO), Fujimoto 2-1, Tsukuba, Ibaraki, 305-8519, Japan
  • ISSN:1573-5028
文摘
The class B genes DEFICIENS (DEF)/APETALA3 (AP3) and GLOBOSA (GLO)/PISTILLATA (PI), encoding MADS-box transcription factors, and their functions in petal and stamen development have been intensely studied in Arabidopsis and Antirrhinum. However, the functions of class B genes in other plants, including ornamental species exhibiting floral morphology different from these model plants, have not received nearly as much attention. Here, we examine the cooperative functions of TfDEF and TfGLO on floral organ development in the ornamental plant torenia (Torenia fournieri Lind.). Torenia plants co-overexpressing TfDEF and TfGLO showed a morphological alteration of sepals to petaloid organs. Phenotypically, these petaloid sepals were nearly identical to petals but had no stamens or yellow patches like those of wild-type petals. Furthermore, the inflorescence architecture in the co-overexpressing torenias showed a characteristic change in which, unlike the wild-types, their flowers developed without peduncles. Evaluation of the petaloid sepals showed that these attained a petal-like nature in terms of floral organ phenotype, cell shape, pigment composition, and the expression patterns of anthocyanin biosynthesis-related genes. In contrast, torenias in which TfDEF and TfGLO were co-suppressed exhibited sepaloid petals in the second whorl. The sepaloid petals also attained a sepal-like nature, in the same way as the petaloid sepals. The results clearly demonstrate that TfDEF and TfGLO play important cooperative roles in petal development in torenia. Furthermore, the unique transgenic phenotypes produced create a valuable new way through which characteristics of petal development and inflorescence architecture can be investigated in torenia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700